TABLE OF CONTENTS

5.0 COUNTY OF DUFFERIN ... 5-1
 5.1 Township of Amaranth ... 5-1
 5.1.1 Waldemar Water Supply ... 5-1
 5.1.2 Vulnerability Analysis .. 5-3
 5.1.3 Drinking Water Threats Assessment ... 5-21
 5.1.4 Conditions Evaluation .. 5-23
 5.1.5 Drinking Water Quality Issues Evaluation 5-24
 5.1.6 Enumeration of Significant Drinking Water Quality Threats 5-26
 5.2 Town of Grand Valley ... 5-30
 5.2.1 Grand Valley Well Supply ... 5-30
 5.2.2 Vulnerability Analysis .. 5-32
 5.2.3 Drinking Water Threats Assessment ... 5-53
 5.2.4 Conditions Evaluation .. 5-55
 5.2.5 Drinking Water Quality Issues Evaluation 5-56
 5.2.6 Enumeration of Significant Drinking Water Threats 5-58
 5.3 Township of East Garafraxa ... 5-62
 5.3.1 Marsville Well Supply .. 5-62
 5.3.2 Vulnerability Analysis .. 5-63
 5.3.3 Drinking Water Threats Assessment ... 5-84
 5.3.4 Conditions Evaluation .. 5-86
 5.3.5 Drinking Water Quality Issues Evaluation 5-87
 5.3.6 Enumeration of Significant Drinking Water Threats 5-89
 5.4 Town of Shelburne ... 5-92
 5.4.1 Shelburne Water Supply ... 5-92
 5.4.2 Vulnerability Analysis .. 5-93
 5.4.3 Drinking Water Threats Assessment ... 5-109
 5.4.4 Conditions Evaluation .. 5-111
 5.4.5 Drinking Water Quality Issues Evaluation 5-112
 5.4.6 Enumeration of Significant Drinking Water Quality Threats 5-113
 5.5 Town of Orangeville ... 5-114
 5.5.1 Orangeville Water Supply ... 5-114
 5.5.2 Drinking Water Quality Threats Assessment 5-115
 5.5.3 Drinking Water Quality Issues Evaluation 5-117
 5.5.4 Enumeration of Significant Drinking Water Quality Threats 5-121

LIST OF MAPS

Map 5-1: County of Dufferin Water Supply Serviced Areas in the Grand River Watershed ... 5-2
<table>
<thead>
<tr>
<th>Map</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-2</td>
<td>Waldemar Water Supply Wellhead Protection Areas</td>
<td>5-7</td>
</tr>
<tr>
<td>5-3</td>
<td>Waldemar Water Supply Unadjusted Intrinsic Vulnerability</td>
<td>5-8</td>
</tr>
<tr>
<td>5-4</td>
<td>Waldemar Water Supply Wellhead Protection Area Initial Vulnerability</td>
<td>5-11</td>
</tr>
<tr>
<td>5-5</td>
<td>Waldemar Water Supply Wellhead Protection Area Transport Pathways</td>
<td>5-12</td>
</tr>
<tr>
<td>5-6</td>
<td>Waldemar Water Supply Wellhead Protection Area Transport Pathways Area of Influence</td>
<td>5-13</td>
</tr>
<tr>
<td>5-7</td>
<td>Waldemar Water Supply Wellhead Protection Area Final Vulnerability</td>
<td>5-14</td>
</tr>
<tr>
<td>5-8</td>
<td>Waldemar Water Supply Percent Managed Lands</td>
<td>5-18</td>
</tr>
<tr>
<td>5-9</td>
<td>Waldemar Water Supply Livestock Density</td>
<td>5-19</td>
</tr>
<tr>
<td>5-10</td>
<td>Waldemar Water Supply Percent Impervious Surfaces</td>
<td>5-20</td>
</tr>
<tr>
<td>5-11</td>
<td>County of Dufferin Water Supply Serviced Areas in the Grand River Watershed</td>
<td>5-31</td>
</tr>
<tr>
<td>5-12</td>
<td>Grand Valley Well Supply Wellhead Protection Areas</td>
<td>5-36</td>
</tr>
<tr>
<td>5-13</td>
<td>Grand Valley Well Supply Unadjusted Intrinsic Vulnerability</td>
<td>5-40</td>
</tr>
<tr>
<td>5-14</td>
<td>Grand Valley Well Supply Wellhead Protection Area Initial Vulnerability</td>
<td>5-41</td>
</tr>
<tr>
<td>5-15</td>
<td>Grand Valley Well Supply Wellhead Protection Area Transport Pathways</td>
<td>5-42</td>
</tr>
<tr>
<td>5-16</td>
<td>Grand Valley Well Supply Wellhead Protection Area Transport Pathways Area of Influence</td>
<td>5-43</td>
</tr>
<tr>
<td>5-17</td>
<td>Grand Valley Well Supply Wellhead Protection Area Final Vulnerability</td>
<td>5-44</td>
</tr>
<tr>
<td>5-18</td>
<td>Grand Valley Well Supply Percent Managed Lands</td>
<td>5-50</td>
</tr>
<tr>
<td>5-19</td>
<td>Grand Valley Well Supply Livestock Density</td>
<td>5-51</td>
</tr>
<tr>
<td>5-20</td>
<td>Grand Valley Percent Impervious Surfaces</td>
<td>5-52</td>
</tr>
<tr>
<td>5-21</td>
<td>County of Dufferin Water Supply Serviced Areas in the Grand River Watershed</td>
<td>5-65</td>
</tr>
<tr>
<td>5-22</td>
<td>Marsville Well Supply Wellhead Protection Area</td>
<td>5-68</td>
</tr>
<tr>
<td>5-23</td>
<td>Marsville Well Supply Unadjusted Intrinsic Vulnerability</td>
<td>5-73</td>
</tr>
<tr>
<td>5-24</td>
<td>Marsville Well Supply Wellhead Protection Area Final Vulnerability</td>
<td>5-74</td>
</tr>
<tr>
<td>5-25</td>
<td>Marsville Well Supply Percent Managed Lands</td>
<td>5-81</td>
</tr>
<tr>
<td>5-26</td>
<td>Marsville Well Supply Livestock Density</td>
<td>5-82</td>
</tr>
<tr>
<td>5-27</td>
<td>Marsville Well Supply Percent Impervious Surfaces</td>
<td>5-83</td>
</tr>
<tr>
<td>5-28</td>
<td>Shelburne Water Supply Wellhead Protection Area</td>
<td>5-95</td>
</tr>
<tr>
<td>5-29</td>
<td>Shelburne Water Supply Unadjusted Intrinsic Vulnerability</td>
<td>5-98</td>
</tr>
<tr>
<td>5-30</td>
<td>Shelburne Water Supply Wellhead Protection Areas Final Vulnerability</td>
<td>5-99</td>
</tr>
<tr>
<td>5-31</td>
<td>Shelburne Water Supply Transport Pathways</td>
<td>5-101</td>
</tr>
<tr>
<td>5-32</td>
<td>Shelburne Well PW7 Wellhead Protection Areas Percent Managed Lands</td>
<td>5-106</td>
</tr>
<tr>
<td>5-33</td>
<td>Shelburne Well PW7 Wellhead Protection Areas Livestock Density</td>
<td>5-107</td>
</tr>
</tbody>
</table>
Map 5-34: Shelburne Well PW7 Wellhead Protection Areas Percent Impervious Surface...
... 5-108

Map 5-35: Issue Contributing Areas for the Orangeville Water Supply located in the Grand River Watershed ... 5-120

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 5-1</td>
<td>Summary of Permit-To-Take-Water Pumping Rates for the Waldemar Water Supply .. 5-1</td>
</tr>
<tr>
<td>Table 5-2</td>
<td>Drinking Water System Information for the Waldemar Water Supply 5-3</td>
</tr>
<tr>
<td>Table 5-3</td>
<td>Annual and Monthly Average Pumping Rates for the Waldemar Water Supply 5-3</td>
</tr>
<tr>
<td>Table 5-4</td>
<td>Waldemar Production Well Pumping Rates .. 5-5</td>
</tr>
<tr>
<td>Table 5-5</td>
<td>SAAT Vulnerability Ratings .. 5-6</td>
</tr>
<tr>
<td>Table 5-6</td>
<td>Wellhead Protection Area Vulnerability Scores - SAAT 5-9</td>
</tr>
<tr>
<td>Table 5-7</td>
<td>Drinking Water Threats .. 5-21</td>
</tr>
<tr>
<td>Table 5-9</td>
<td>Summary of Potential Conditions for the Waldemar Water Supply - Ecolog ERIS search .. 5-24</td>
</tr>
<tr>
<td>Table 5-10</td>
<td>Waldemar Water Supply Significant Drinking Water Quality Threats 5-29</td>
</tr>
<tr>
<td>Table 5-11</td>
<td>Municipal Production Wells in the Grand Valley Water Supply System 5-30</td>
</tr>
<tr>
<td>Table 5-14</td>
<td>Pumping Rates Used for the Grand Valley Well Supply Wellhead Protection Area Delineation .. 5-33</td>
</tr>
<tr>
<td>Table 5-15</td>
<td>SAAT Vulnerability Ratings .. 5-37</td>
</tr>
<tr>
<td>Table 5-16</td>
<td>Well Head Protection Area Vulnerability Scores – SAAT 5-38</td>
</tr>
<tr>
<td>Table 5-17</td>
<td>Grand Valley Wellhead Protection Areas with Vulnerability Scores of 6 or Higher ... 5-47</td>
</tr>
<tr>
<td>Table 5-18</td>
<td>Managed Lands Percentage in the Grand Valley Wellhead Protection Areas 5-48</td>
</tr>
<tr>
<td>Table 5-19</td>
<td>Livestock Density (NU/acre) in the Grand Valley Wellhead Protection Areas 5-49</td>
</tr>
<tr>
<td>Table 5-39</td>
<td>SWAT Vulnerability Ratings .. 5-97</td>
</tr>
<tr>
<td>Table 5-40</td>
<td>Wellhead Protection Area Vulnerability Scores – SWAT 5-97</td>
</tr>
<tr>
<td>Table 5-42</td>
<td>Managed Lands Percentage in the Shelburne Wellhead Protection Areas 5-104</td>
</tr>
<tr>
<td>Table 5-44</td>
<td>Drinking Water Threats .. 5-109</td>
</tr>
</tbody>
</table>
This page left blank intentionally.
5.0 COUNTY OF DUFFERIN

5.1 Township of Amaranth

5.1.1 Waldemar Water Supply

Amaranth Township is located in the Grand River watershed and is part of Dufferin County. The Village of Waldemar is located in the south west corner of the Township just north of Highway 109. Within the village, Waldemar Heights is a residential subdivision located just to the east of the Grand River with its water supply being from a municipal water supply system.

Waldemar currently has three water supply wells Waldemar Well 1 (PW1), 2 (PW2), and 3 (PW3) which service the Waldemar Heights Subdivision and a number of houses on the west side of the Grand River (Map 5-1). The population serviced is approximately 342 residents.

PW1 was drilled in 1975 as a 150 millimetre (mm) diameter well extending into the bedrock. The well is 107 m deep with an open interval in the bedrock extending from 16 m to 107 m. PW1 encountered limestone bedrock at a depth of 15 m and shale was encountered at 105 m below grade. The upper 7 m of overburden is described as primarily clay and is underlain by about 1 m of sand and gravel and 7 m of hardpan — assumed to be till. The majority of water entering the well is obtained from fractures at 48.9 and 72.4 m below the top of the casing (btoc). PW1 currently operates at an average pumping rate of 61 m\(^3\)/day.

PW2 was drilled in 1989 as a 150 mm diameter well with a depth of 117 m. The well is constructed as an open hole in the bedrock from 23 to 117 m. The overburden sediments are described in the well log as primarily clay. Shale was encountered at a depth of 115 m below grade. The water is obtained from fractures located at 51, 64, 75, 84, 86 and 87 m below top of casing. PW2 currently operates at a pumping rate of 51 m\(^3\)/day.

PW3 was completed in 2002 as a backup supply for the two existing wells. The well is 200 mm in diameter and has a depth of 91 m. Limestone bedrock was encountered at 17.7 m below grade and shale was not encountered in this well. According to the driller’s log the overburden consists primarily of clay. The well is constructed as an open hole in the bedrock from 21 m to 91 m and obtains water from multiple fractures within the bedrock.

The Waldemar Water Supply system operates according to Permit to Take Water (PTTW) No. 4127-6DZNLL5. The permitted pumping rates are presented below in Table 5-1. A summary of the drinking water system information and annual and monthly average pumping rates is presented on Table 5-2 and Table 5-3.

<table>
<thead>
<tr>
<th>Well</th>
<th>Depth (m)</th>
<th>Open Interval</th>
<th>Permitted Pumping Rate (PTTW No. 4127-6DZNLL5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PW1</td>
<td>107</td>
<td>16 m to 107 m</td>
<td>341 L/min</td>
</tr>
<tr>
<td>PW2</td>
<td>117</td>
<td>23 m to 117 m</td>
<td>273 L/min</td>
</tr>
<tr>
<td>PW3</td>
<td>91</td>
<td>21 m to 91 m</td>
<td>318 L/min (Reserve)</td>
</tr>
</tbody>
</table>
Map 5-1: County of Dufferin Water Supply Serviced Areas in the Grand River Watershed
Table 5-2: Drinking Water System Information for the Waldemar Water Supply

<table>
<thead>
<tr>
<th>DWS Number</th>
<th>DWS Name</th>
<th>Operating Authority</th>
<th>GW or SW</th>
<th>System Classification¹</th>
<th>Number of Users²</th>
</tr>
</thead>
<tbody>
<tr>
<td>220013553</td>
<td>Waldemar Water Supply</td>
<td>Dufferin Water Co. Ltd.</td>
<td>GW</td>
<td>Large Municipal Residential System</td>
<td>342</td>
</tr>
</tbody>
</table>

¹ as defined by O. Reg. 170/03 (Drinking Water Systems) made under the Safe Drinking Water Act, 2002.

Table 5-3: Annual and Monthly Average Pumping Rates for the Waldemar Water Supply

<table>
<thead>
<tr>
<th>Well or Intake</th>
<th>Annual Avg. Taking¹ (m³/d)</th>
<th>Monthly Average Taking¹ (m³/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jan</td>
<td>Feb</td>
</tr>
<tr>
<td>PW1</td>
<td>52.0</td>
<td>38.5</td>
</tr>
<tr>
<td>PW2</td>
<td>34.6</td>
<td>32.8</td>
</tr>
</tbody>
</table>

It is noted that in 2008 PW3 was online and is currently not used for the municipal water supply.

5.1.2 Vulnerability Analysis

Delineation of Wellhead Protection Areas

Wellhead Protection Areas (WHPAs) associated with the municipal water supply represents the areas within the aquifer that contribute groundwater to the well over a specified time period. According to the Technical Rules (MOE, 2009b), four Wellhead Protection Areas must be identified.

The delineation of a Wellhead Protection Area for a municipal well field is based on the delineation of the time of travel capture areas for the municipal well field. The Wellhead Protection Area represents the area projected to land surface where groundwater can be captured by pumping at the municipal wells. It should be noted that the WHPAs represent time of travel within the saturated zone of the aquifer to the well and do not account for travel time from ground surface down to the water table. The pumping rates used to determine the Wellhead Protection Area are based on the allocated quantity of water.

The Wellhead Protection Areas were sub-divided into four zones as follows according to Technical Rule V.3 (47-50):

- Zone A (WHPA-A) 100 m radius from wellhead
- Zone B (WHPA-B) 2 year time of travel (TOT) capture zone
- Zone C (WHPA-C) 5 year time of travel capture zone
- Zone D (WHPA-D) 25 year time of travel capture zone
Modelling Approach for the Waldemar Water Supply

Wellhead Protection Areas for the Waldemar water supply wells were delineated as part of a study completed by Golder in 2010 using a FEFLOW groundwater flow model. The model was constructed and calibrated with available hydrogeological data and hydrogeological mapping products (Golder, 2010a). Porosity used in the model was assigned at 0.2 for all overburden units and 0.05 for all bedrock units (Golder, 2010a).

The model was completed based on a number of simplifying assumptions that incorporate some level of uncertainty that is dependent on the nature, spatial distribution and density of available data. The groundwater model was calibrated to represent steady state conditions in the aquifer using static water levels from 1061 points. The NRMS error for the calibration is reported as being 6.1% which is considered to be within the acceptable limits of less than 10% for numerical models. The model calibration results were compared to reported pumping tests at the wells and showed a reasonable fit to the observed groundwater conditions recorded in the tests. Stream flow data was also used for calibration. Through the calibration process, it was found that the hydraulic conductivities of the geological units, simulated flow pattern within the bedrock aquifer, and modelled baseflows are in good agreement with site specific information (Golder, 2010b).

Uncertainties within the model are associated with limitations in the availability of subsurface information and can be related to projected variability in the aquifer properties (e.g. hydraulic conductivity; porosity) or uncertainties with the conceptual model (e.g. groundwater-surface water interactions; location of flow boundaries; recharge rates; continuity in aquitards; direction of regional groundwater flow).

To account for some of these uncertainties Golder has applied a factor of safety to the Wellhead Protection Areas. The factor of safety has been applied to two components of the Wellhead Protection Areas; the width and length of the capture zones were increased by 20% to account for uncertainty in the hydraulic characteristics of the aquifer system and the orientation of the capture zone was adjusted by 5 degrees (plus and minus) along its centre line to account for some uncertainty in the regional flow direction by increasing the width of the capture zones at increasing distances from the pumping well. This reflects the concept that the available data is typically concentrated around the pumping well and that the uncertainty in the hydrogeological understanding decreases at increasing distances from the supply wells (Golder, 2010b).

Waldemar Wellhead Protection Areas

The capture zones were developed for all three municipal wells in Waldemar. PW3 is a stand-by well that is only used occasionally, but for the purposes of the assessment was assumed to be operating simultaneously with the other two wells and at a rate that is the same as that for PW1 (Golder, 2010b).

The pumping rates used were selected based on historic and estimated future pumping rates. Since the pumping rates are not expected to increase over the next 25 years due to a lack of population growth or predicted increased demand, forecast pumping rates used for the capture zone delineation were based on historical average pumping rates (Golder, 2010b) and are provided in Table 5-4.
Table 5-4: Waldemar Production Well Pumping Rates

<table>
<thead>
<tr>
<th>Supply Wells</th>
<th>Modelled Pumping Rate Used</th>
<th>Historical Average Pumping Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waldemar PW1</td>
<td>61 m³ / day</td>
<td>61 m³ / day</td>
</tr>
<tr>
<td>Waldemar PW2</td>
<td>51 m³ / day</td>
<td>51 m³ / day</td>
</tr>
<tr>
<td>Waldemar PW3</td>
<td>61 m³ / day</td>
<td>0 m³ / day</td>
</tr>
</tbody>
</table>

To develop time of travel capture zones, groundwater particles were released at the pumping wells in the model and tracked backwards towards their source of origin (recharge). At each well location, particles were released in all hydrostratigraphic units “open” to the wellbore. The time-related pathlines that are subsequently generated by the model from this analysis are then overlain and a single time of travel capture zone drawn around the “family” of pathlines generated at each well.

The location and orientation of the Wellhead Protection Area is shown in Map 5-2. The Waldemar capture zones extend eastward from the well for a distance of approximately 3.2 km and cover an area of 205 ha.

Peer Review

A peer review of the report *Vulnerability Analysis, Issues Evaluation and Threats Assessment: Township of Amaranth* (Burnside, 2010a) was completed by Brian Luinstra of Luinstra Earth Sciences. The overall impressions of the report by the peer reviewer are as follows:

“In the Peer Reviewer’s professional opinion, the overall results appear reasonable and are consistent with the requirements outlined in the Ontario Ministry of Environment Technical Rules for completion of the Assessment Report under the Clean Water Act, 2006. The overall approach to developing vulnerability scores, evaluating Issues and assessing threats are consistent with the Technical Rules.”

Responses to the peer review comments were incorporated into the final Report. These responses to the peer review comments enhanced the overall defensibility of the report but did not impact the outcome of the Wellhead Protection Areas.

Vulnerability Scoring in Wellhead Protection Areas

The completion of aquifer vulnerability scoring is outlined under Part VII of the Technical Rules (MOE, 2009b). Mapping for this study was completed in three stages: i) development of aquifer vulnerability mapping ii) update of vulnerability due to transport pathways and iii) assignment of vulnerability scores.

Aquifer vulnerability mapping was completed within the GRCA watershed using the Surface to Aquifer Advection Time (SAAT) approach. The GRCA retained Earthfx to complete the vulnerability mapping using the SAAT method for the entire Grand River watershed as described in the Earthfx 2008 report. The SAAT approach estimates the average time required by a water particle to travel from a point at the ground surface to the aquifer of concern. The SAAT is approximated by using the vertical component of the advective velocity integrated over the vertical distance and the average porosity. The travel times generated are categorized into groups being <5 years, 5 to 25 years and > 25 years.

Calculation of the SAAT as conducted by Earthfx was based on the use of empirical formulae provided by the MOE. These formulae provide methods for the computation of two separate
components of the SAAT, the unsaturated zone advection time (UZAT) and the water table to aquifer advection time (SAAT). UZAT was computed based on values assumed for depth to water table, mobile water content and infiltration rate. For the study a depth to water map was generated using an interpolated water table map and the elevation of the land surface. Mobile water content was approximated based on the specific yield of each soil type and infiltration was approximated using a GAWSER recharge model in which infiltration was assumed to be equal to the recharge rate. In areas where several layers of varying materials were present the calculations were done for each layer and then summed over the entire unsaturated portion of the sub-surface.

Where required, the WAAT component of the SAAT was also computed. It is noted by Earthfx that the WAAT was only computed in two instances; the first where the target aquifer was known to be confined and the second where no aquifer material was recognised. The factors included in the computation of the WAAT were aquifer porosity, thickness of the geologic layer, vertical hydraulic conductivity and the difference between the head in the confined aquifer and the water table. Hydraulic conductivities were estimated based on the geologic materials listed in the boreholes logs. Vertical hydraulic gradients were estimated by subtracting the interpolated potentiometric surface from the interpolated water table. The thickness of each layer above the target aquifer and the location of the top of the target aquifer were determined from the borehole logs.

The SAAT travel times were grouped based on guidance provided by the MOE to create ratings which were then used to construct an aquifer vulnerability map of the study area. TOT values less than 5 years are rated as High Vulnerability. Values between 5 and 25 years are Medium vulnerability. Any value greater than 25 years is classified as having a Low Vulnerability. The various vulnerability ratings based on the travel times are shown in Table 5-5. The unadjusted intrinsic vulnerability is shown on Map 5-3.

<table>
<thead>
<tr>
<th>Time of Travel (years) -</th>
<th>Vulnerability Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td><5</td>
<td>High</td>
</tr>
<tr>
<td>5 to 25</td>
<td>Medium</td>
</tr>
<tr>
<td>>25</td>
<td>Low</td>
</tr>
</tbody>
</table>

Table 5-5: SAAT Vulnerability Ratings
Map 5-2: Waldemar Water Supply Wellhead Protection Areas
Map 5-3 Waldemar Water Supply Unadjusted Intrinsic Vulnerability
Vulnerability Scoring in the Waldemar Wellhead Protection Areas

As described in the Technical Rules (MOE, 2009b), a vulnerability score is assigned to each vulnerable area according to the groundwater’s susceptibility to becoming contaminated and that contamination reaching a well. Within Wellhead Protection Areas the vulnerability score is determined based on overlaying the SAAT aquifer vulnerability classification (high, medium, low) with the defined Wellhead Protection Areas.

The vulnerability scoring for the current study was completed in accordance with Rule 82 of the Technical Rules. Vulnerability scores range from 10 for areas with the highest vulnerability to 2 for areas with low vulnerability. Scores were assigned as per Table 2(a) in Part VII of the Technical Rules (MOE, 2009b). A summary of the process used to define vulnerability scores is outlined in the Table 5-6 below:

<table>
<thead>
<tr>
<th>Time of Travel Zone (WHPA)</th>
<th>0 to 5 years (High)</th>
<th>5 to 25 years (Medium)</th>
<th>> 25 years (Low)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHPA-A (100m)</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>WHPA-B (2yrTOT)</td>
<td>10</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>WHPA-C (5 yr TOT)</td>
<td>8</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>WHPA-D (25 yr TOT)</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Map 5-4 shows the vulnerability scores assigned to the Waldemar Wellhead Protection Areas using the SAAT vulnerability mapping. The mapping illustrates that most of the Wellhead Protection Area is rated as low vulnerability. This is a reflection of the fine-grained till overburden mapped in the area. Areas of medium and high vulnerability are located on the southwest side of the wells towards the Grand River valley. The 2 year TOT zone includes the Waldemar Heights subdivision and has scores of 6 and 8 while the 100 m radius around each well has a score of 10. The aggregate pit located in WHPA-D has a score of 6 since the vulnerability was increased to high based on transport pathways as discussed below.

Identification of Transport Pathways and Vulnerability Adjustment

Technical Rules 39 to 41 (MOE, 2009b) allow for an vulnerability rating increase of an aquifer due to the presence of transport pathways that may increase the vulnerability of the aquifer. These pathways provide a conduit for contaminants to bypass the natural protection of the aquifer.

Transport Pathways in the Waldemar Wellhead Protection Areas

Water Wells

A review of water well records from the MOE water well database and a field survey were conducted to identify wells within the Wellhead Protection Areas. The wells were then evaluated and ranked based on their risk to the supply aquifer, which included an analysis of the age of the well and its likely condition, as well as a visual inspection of the well, where possible. The survey resulted in the identification of five water wells within the Wellhead Protection Areas and classified three of the wells as high risk wells.

Residential Septic Systems

The municipal aquifer for the Waldemar Water Supply wells is a confined aquifer overlain by up to 20 m of fine grained sediments. Individual septic systems assumed present at all residential
homes within the Wellhead Protection Area are not considered to constitute a transport pathway due to their relatively shallow depth of penetration.
Map 5-4: Waldemar Water Supply Wellhead Protection Area Initial Vulnerability
Map 5-5: Waldemar Water Supply Wellhead Protection Area Transport Pathways

- Lower Tier Municipal Boundary
- Roads
- Railway
- Streams
- Lake/Reservoir

Transport Pathway:
- Municipal Well
- Wellhead Protection Area
- Pits / Quarries

Map created: 19-Nov-2010
Map 5-6: Waldemar Water Supply Wellhead Protection Area Transport Pathways Area of Influence

Map created: 18-Nov-2010
Map 5-7: Waldemar Water Supply Wellhead Protection Area Final Vulnerability
Surface Water Features

Surface water features can be considered transport pathways as they can create a short cut to the aquifer for contaminants, especially when the features are man-made such as man-made pond, dugouts and aggregate extraction ponds. Based on the hydrogeology of the areas, the aquifer used by the municipal wells is protected by a thick aquitard, thus, most constructed surface water features should have little to no connectivity with the regional aquifer.

Aggregate Operations

As part of the current study, aggregate operations have been mapped based on existing databases and the review of aerial photography and satellite imagery along with a windshield survey of the Wellhead Protection Areas. An operational sand and gravel pit is located at the intersection of 8th Line and County Road 109. Part of the footprint of the pit has filled with water indicating that the excavation has intersected the water table. This transport pathway for the Waldemar Water Supply is shown on Map 5-5 and the area of influence is shown on Map 5-6.

Adjusted Vulnerability Scoring for the Waldemar Wellhead Protection Area

For this evaluation a visual survey of high risk well locations was undertaken. Since there were no areas within the current study that had a significant concentration of high risk wells, no increases in vulnerability were made.

For this study the only transport pathway of concern is the sand and gravel pit located at the eastern edge of the WHPA-D. The rationale for an increase in vulnerability due to the presence of this feature was examined in the context of the guidelines provided by the MOE. It is recognized that within the footprint of this gravel pit, the entire overburden layer has been removed. The removal of the overburden has resulted in the opening up of the underlying overburden and perhaps bedrock layers. This opening up will have resulted in a loss of the protective layers overlying the aquifer across the entire footprint of the gravel pit. Based on this assumption, the vulnerability within the footprint of the gravel pit was increased from a low vulnerability to high as all protective sediments overlying the water table have been removed. The final vulnerability for the Waldemar Water Supply is shown on Map 5-7.

Uncertainty in the Wellhead Protection Area Delineation and Vulnerability Scoring for the Waldemar Water Supply

Uncertainty associated with a vulnerability assessment can be attributed to a number of factors including density of input data; quality and reliability of data; and assumptions made when reducing or synthesizing data. The uncertainty associated with the vulnerability is important as it will be used, along with the risk assessment score, to determine the need for the spatial extent of additional data collection and/or analysis.

Based on known variations in hydraulic properties, the factor of safety approach is not considered to adequately address the issue of uncertainty. It is known that slight variations of aquifer properties may impact the shape and orientation of the capture zones. The safety factor, while attempting to cover some of this likely variation, does not give an indication of the likely impact of variations in actual model properties as there is no correlation between the factor of safety and the model parameters.

Although the calibration results were good, the lack of information on the impact of variations in model parameters on the resulting capture zones suggests that there has been inadequate work completed for the full evaluation of uncertainty.
In the Earthfx study both components were computed based on simplifying assumptions included in the MOE provided formulae. The results of the UZAT analysis showed a high degree of variance which may be attributed to variance in the input GAWSER model. The results of the analysis indicate that there is a 95.5% certainty that the UZAT time calculated is within +/- 42 years of the actual time at any well. This indicates that the variability of the UZAT value is greater than the divisions of the vulnerability range i.e. the vulnerability could vary across the entire range of classifications from low to medium or high based on its margin of error. The potential for this high variation indicates that the uncertainty related to this component is high.

UZAT was computed at various water well points across the study area. There was considerable effort made within the study to improve the quality of the spatial and lithologic data provided by each data point. In this regard only wells with a location accuracy of less than 100 m were used as part of the study. It can be interpreted that the computations performed represented values that were correct spatially across the study area.

The results of a statistical analysis of WAAT indicate a high variance in the computed values which points to a high variance and high degree of uncertainty in the underlying data. The computation is known to be dependent on estimates of hydraulic properties, and interpolation of potentiometric surfaces which are based on sparse and unreliable data. The resulting product can be regarded as being an amalgamation of all the primary data uncertainties. Based on the uncertainty associated with the input data it is concluded that the WAAT calculation can be regarded as having a high uncertainty.

As well, the SAAT is derived by combining the previously discussed components of UZAT and WAAT. It is noted that the UZAT was computed using a GAWSER model to estimate recharge. The GAWSER model is known to be built on certain simplifying assumptions that have not been expounded in the background report from Earthfx. In light of this, no level of uncertainty can be attached to the results of this model. Using the results of the UZAT and WAAT calculations as outlined in the Earthfx report it is concluded that the level of uncertainty associated with the computation of SAAT is high. While the corrections applied to well locations resulted in spatially correct analyses, the underlying uncertainty in the computations themselves results in an overall ranking of high uncertainty for the process.

Given the poor data distribution of wells used for the SAAT analysis within the Wellhead Protection Area and the variability of surficial geology in the study area, there is high uncertainty in the SAAT vulnerability mapping.

In relation to transport pathways, the vulnerability was increased around the footprint of a sand and gravel pit based on air photography. This footprint may change in the future, but the uncertainty can be considered low since it is based on local field observations.

Managed Lands within the Waldemar Wellhead Protection Area

Technical Rule 16 require that the percentage of managed lands within WHPA-A, B, C and D be assessed in areas where the vulnerability scores allow for significant, moderate or low threats. The calculated percent managed land is used in the threat assessment to determine the circumstances for nutrient application related threats including the application of agricultural source material to land, the application of non-agricultural source material to land and the application of commercial fertilizer to land. These activities can result in surface water runoff and potential pathogen and chemical contamination.
Managed land is defined as any land to which there may be the application of agricultural source material (ASM), commercial fertilizer, or non-agricultural source material (NASM). Managed lands include crop land, fallow land, improved pasture, golf courses, sports fields and lawns. Managed land can be broken down into two subsets; agricultural and non-agricultural managed land. Agricultural managed land includes cropland, fallow and improved pasture that may receive nutrients. Non-agricultural managed land includes golf courses (turf, sports fields, lawns) that may receive nutrients (primarily commercial fertilizer).

To measure the impacts from these activities on water supplies a methodology was developed by the GRCA in association with the MOE for the evaluation of percentage of managed land within each wellhead protection area.

Under the methodology (MOE, 2009b) the percentage of managed land is computed based on the land area associated with that vulnerable area or area within the vulnerable area. The percentage of agricultural managed lands are also evaluated separately from the overall managed land percentages. The overall percentage of managed land is used to categorize the landscape for further analysis of threats through the MOE provided Tables of Drinking Water Threats. For areas where the managed lands total accounts for less than 40% of the vulnerable area, the area is considered to have a low potential for nutrient application to cause contamination of drinking water sources. If the managed lands total accounts for 40% to 80% of the vulnerable area then the area is considered to have a moderate potential for nutrient application to cause contamination of drinking water sources. If the managed land total accounts for over 80% of the vulnerable area then the area is considered to have a high potential for nutrient application to cause contamination of drinking water sources. A map illustrating the percent managed lands for the Waldemar Wellhead Protection Areas is provided in Map 5-8.

Livestock Density within the Waldemar Wellhead Protection Area

Livestock density is used as a surrogate measure of the potential for generating, storing and land applying agricultural source material as a source of nutrients vulnerable areas. The livestock density is expressed as nutrient units per acre (NU/Acre) and is calculated based on the number of animals housed, or pastured on a farm unit that generates enough manure to fertilize an area of land. A map of livestock density for the Waldemar Wellhead Protection Areas is provided in Map 5-9.

Livestock density is combined with the results of the computations for percentage agricultural managed land for the purposes of determining the circumstances related to the application of nutrients and the associated threats as defined by the MOE’s Table of Drinking Water Threats.

Percentage of Impervious Surface Area within the Waldemar Wellhead Protection Area

Impervious surfaces are defined in the Technical Rules (MOE, 2009b) as areas that receive road salt application and include roads and parking lots. The areas were calculated using road mapping from the National Road Network (Natural Resources Canada) and satellite air photography to identify large parking lots and paved areas. Using a 1 km x 1 km grid centered over each vulnerability area, the percentage of impermeable surfaces within each square kilometre was calculated. The percentage of total impervious surface areas within each square kilometre of vulnerable areas is shown in Map 5-10. The percentage of impervious surfaces is an indicator for the potential for impacts due to road salting. In areas with high levels of impervious surfaces (roads) there is an increased likelihood that road salts will be applied.
Map 5-8: Waldemar Water Supply Percent Managed Lands
Map 5-9: Waldemar Water Supply Livestock Density

Livestock Density (ASM)
W-HPA - Nutrient Unit per Acre
- < 0.5 NU/acre
- 0.5 - 1.0 NU/acre
- > 1.0 NU/acre

Map created: 2-Mar-2015
Map 5-10: Waldemar Water Supply Percent Impervious Surfaces
5.1.3 Drinking Water Threats Assessment

The Ontario Clean Water Act, 2006 defines a Drinking Water Threat as “an activity or condition that adversely affects or has the potential to adversely affect the quality or quantity of any water that is or may be used as a source of drinking water, and includes an activity or condition that is prescribed by the regulation as a drinking water threat.”

The Technical Rules (MOE, 2009) list five ways in which to identify a drinking water threat:

a) Through an activity prescribed by the Act as a Prescribed Drinking Water Threat;

b) Through an activity identified by the Source Water Protection Committee as an activity that may be a threat and (in the opinion of the Director) a hazard assessment confirms that the activity is a threat;

c) Through a condition that has resulted from past activities that could affect the quality of drinking water;

d) Through an activity associated with a drinking water issue; and

e) Through an activity identified through the events based approach (this approach has not been used in this Assessment Report).

Activities that Are or Would be Drinking Water Threats in the Wellhead Protection Areas

Ontario Regulation 287/07, pursuant to the Clean Water Act, provides a list of Prescribed Drinking Water Threats that could constitute a threat to drinking water sources. Table 5-7 lists the activities that are prescribed drinking water threats. Listed beside the prescribed drinking water threats are the typical land use activities that are associated with the threat.

In addition, there is one local threat that has been identified in the Lake Erie Source Protection Region: the transportation of oil and fuel products through a pipeline.

A spill of oil and fuel products could result in the presence of petroleum hydrocarbons or BTEX in groundwater. The conveyance of oil by way of an underground pipeline that would be designated as transmitting or distributing “liquid hydrocarbons”, including “crude oil”, “condensate”, or “liquid petroleum products”, and not including “natural gas liquids” or “liquefied petroleum gas”, within the meaning of Ontario Regulation 210/01 under the Technical Standards and Safety Act or is subject to the National Energy Board Act, was approved as a local threat. The letter of approval from the Director of the Source Protection Programs Branch and table of hazard ratings is found in Appendix D.

<table>
<thead>
<tr>
<th>Prescribed Drinking Water Threat</th>
<th>Land Use / Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontario Regulation 287/07 s.1.1.(1)</td>
<td></td>
</tr>
<tr>
<td>1 The establishment, operation or maintenance of a waste disposal site within the meaning of Part V of the Environmental Protection Act.</td>
<td>Landfills – Active, Closed Hazardous Waste Disposal Liquid Industrial Waste</td>
</tr>
</tbody>
</table>
Table 5-7: Drinking Water Threats

<table>
<thead>
<tr>
<th></th>
<th>Land Use / Activity</th>
<th>Threats</th>
</tr>
</thead>
</table>
| 2 | The establishment, operation or maintenance of a system that collects, stores, transmits, treats or disposes of sewage. | Sewage Infrastructures
E.g. manure, whey, etc.
Agriculture Fertilizer
General Pesticide Storage
General Fertilizer Storage
Road Salt Application
Road Salt Storage
Snow Dumps
Petroleum Hydrocarbons
DNAPLS
Organic Solvents
Organic Soil Conditioning Biosolids
Organic Soil Conditioning Biosolids
Biosolids
Agriculture Operations
Agricultural Operations
De-icing
Private water taking
Impervious Surfaces
Agricultural Operations |

Local Drinking Water Threat

The conveyance of oil by way of an underground pipeline that would be designated as transmitting or distributing “liquid hydrocarbons”, including “crude oil”, “condensate”, or “liquid petroleum products”, and not including “natural gas liquids” or “liquefied petroleum gas”, within the meaning of the Ontario Regulation 210/01 under the Technical Standards and Safety Act or is subject to the National Energy Board Act. 1

Identification of Significant, Moderate and Low Drinking Water Quality Threats for the Waldemar Water Supply

The identification of a land use activity as a significant, moderate, or low drinking water threat depends on its risk score, determined by considering the circumstances of the activity and the type and vulnerability score of any underlying protection zones, as set out in the Tables of Drinking Water Threats available through www.sourcewater.ca. Information on drinking water threats is also accessible through the Source Water Protection Threats Tool: http://swpip.ca. For local threats, the risk score is calculated as per the Director’s Approval Letter, as shown in Appendix C. The information above can be used with the vulnerability scores shown in Map 5-7 to help the public determine where certain activities are or would be significant, moderate and low drinking water threats.

1: As confirmed by the letter from the Director of the Source Protection Programs Branch in Appendix D.
Table 5-8 provides a summary of the threat levels possible in the Waldemar Well Supply for Chemical, Dense Non-Aqueous Phase Liquid (DNAPL), Pathogen, and Local Threats (Oil Pipelines). A checkmark indicates that the threat classification level is possible for the indicated threat type under the corresponding vulnerable area / vulnerable score; a blank cell indicates that it is not. The colours shown for each vulnerability score correspond to those shown in Map 5-7.

<table>
<thead>
<tr>
<th>Threat Type</th>
<th>Vulnerable Area</th>
<th>Vulnerability Score</th>
<th>Threat Classification Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Significant 80+</td>
</tr>
<tr>
<td>Chemicals</td>
<td>WHPA-A</td>
<td>10</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>WHPA-B</td>
<td>8</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>WHPA-B/D</td>
<td>6</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>WHPA-C/D</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Handling / Storage of DNAPLs</td>
<td>WHPA-A/B/C</td>
<td>Any Score</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>WHPA-D</td>
<td>6</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>WHPA-D</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Pathogens</td>
<td>WHPA-A</td>
<td>10</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>WHPA-B</td>
<td>8</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>WHPA-B</td>
<td>6</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>WHPA-C/D</td>
<td>Any Score</td>
<td></td>
</tr>
<tr>
<td>Local Threat (Oil Pipelines)</td>
<td>WHPA-A</td>
<td>10</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>WHPA-B</td>
<td>8</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>WHPA-B/D</td>
<td>6</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>WHPA-C/D</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

5.1.4 Conditions Evaluation

In addition to present land use activities, any conditions resulting from past activities are also considered drinking water threats. As described in the Technical Rules (MOE, 2009), the following conditions are considered drinking water threats to groundwater sources if located within vulnerable areas:

- The presence of a non-aqueous phase liquid in groundwater in a HVA, SGRA or Wellhead Protection Area;
- The presence of a contaminant in groundwater in a HVA, SGRA or a Wellhead Protection Area, if the contaminant is listed in Table 2 of the Soil, Groundwater and Sediment Standards and is present at a concentration that exceeds the potable groundwater standard set out for the contaminant in the table.

Conditions Evaluation for the Waldemar Water Supply

A review of available data regarding potential contamination within the Wellhead Protection Areas was completed. Data available included databases from the Ecolog ERIS results such as
Record of Site Condition, MOE Spills Database and Occurrence Reporting Information System (ORIS).

Three spills were recorded in the ORIS database as potential being within the Wellhead Protection Area. Table 5-9 provides a summary of potential conditions identified through the Ecolog ERIS search. This search of available databases does not provide evidence of a condition such as water quality results or monitoring report results.

Table 5-9: Summary of Potential Conditions for the Waldemar Water Supply - Ecolog ERIS search

<table>
<thead>
<tr>
<th>Source Database</th>
<th>Description</th>
<th>Location</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR15 Oil spill</td>
<td>East Half of Lot 2,</td>
<td>4 L oil spill to ground in 1992, possible impact (Spill ID 77495)</td>
<td></td>
</tr>
<tr>
<td>CR15 Oil spill</td>
<td>Con 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORIS Furnace oil spill</td>
<td>Residence on Hwy 9</td>
<td>450 L furnace oil spill to ground, soil contamination confirmed (Spill ID 94911)</td>
<td></td>
</tr>
<tr>
<td>ORIS Mineral oil spill</td>
<td>South Half of Lot 2,</td>
<td>Unknown amount of mineral oil spill to ground in 1993, impact possible (Spill ID 139544)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Con 9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Based on the available data there were no Conditions identified in the Waldemar Wellhead Protection Areas.

5.1.5 Drinking Water Quality Issues Evaluation

The objective of the Issues evaluation is to identify drinking water Issues where the existing or trending concentration of a parameter or pathogen at an intake, well or monitoring well would result in the deterioration of the quality of water for use as a source of drinking water. The parameter or pathogen must be listed in Schedule 1, 2 or 3 of the Ontario Drinking Water Quality Standards (ODWQS) or Table 4 of the Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines (Technical Rules XI.1 (114 – 117)).

Once a drinking water Issue is identified, the objective is to identify all sources and threats that may contribute to the issue within an Issue Contributing Area and manage these threats appropriately. If at this time the Issue Contributing Area cannot be identified or the Issue cannot be linked to threats then a work plan must be provided to assess the possible link.

If an Issue is identified for an intake, well or monitoring well, then all threats related to a particular Issue within the Issue Contributing Areas are significant drinking water threats, regardless of the vulnerability.

Methodology for Water Quality Issues Evaluation for the Waldemar Water Supply

As part of the Issues evaluation, a review of available water quality data was undertaken to assess whether any contaminants are impacting, have the potential to impact or have the potential to interfere with the Waldemar Water Supply sources. This included the following steps:

- Collection of water quality data.
- Comparison of water quality data to the ODWQS to see if any parameters were in exceedance.
Concentrations of parameters of consideration over time were plotted to evaluate if there were any increasing trends.

Water Operator interview.

All available water quality data for the Waldemar water supply wells was collected and reviewed. This included hydrogeological studies, engineering reports and MOE annual reports for the water supply systems.

Water Quality Issues Evaluation for the Waldemar Water Supply

The MOE Drinking Water Systems O. Reg. 170/03, 2005 and 2008 Annual Reports for the Waldemar Water Supply system were reviewed to identify any water quality concerns. The sampling results provided in the report indicate that the water obtained from PW1, PW2 and PW3 contains elevated concentrations of fluoride. Previous water quality data collected from the wells in 2003 also showed elevated concentrations of fluoride with concentrations in the range of 1.7 to 1.94 mg/L.

The water quality data also indicates that hardness concentrations are elevated above the Operational Guideline (OG) of the ODWQS range of 80-100 mg/L, being 337 mg/L. This level, (337 mg/L), is typical of drinking water obtained from a dolostone bedrock source. Elevated hardness and total dissolved solids were also noted during the 2003 sampling event. Hardness in water is an aesthetic objective and is typically handled using household water softeners; the occurrence of elevated total dissolved solids is not considered an issue that threatens the groundwater as a safe drinking water source.

Review of available microbiological data was conducted for the Waldemar Heights wells. No concerns with total coliforms or *E.coli* were documented.

Fluoride concentrations at the Waldemar wells have exceeded the Maximum Allowable Concentration (MAC) ODWQS of 1.5 mg/L with measured concentrations ranging from 1.7 to 1.94 mg/L. The MOE recommends that public awareness concerning additional fluoride sources be raised when natural fluoride concentrations are between 1.5 mg/L and 2.4 mg/L. The current concentration of fluoride observed at the wells is naturally occurring and not considered a condition that threatens the groundwater as a safe drinking water source.

The operator of the Waldemar Water Supply system, was consulted to identify any Issues that may result in the deterioration of the water quality. No Issues under Technical Rule 114 were identified for the Waldemar Water Supply system.

Summary of Water Quality Issues Evaluation for Waldemar Water Supply

Upon review of available current drinking water quality data there are no identified Issues under Technical Rule 114 for the Waldemar wells. The concentrations of fluoride and hardness are elevated but are naturally occurring and therefore do not reflect a deterioration of water quality. Neither of the above parameters is currently interfering or is anticipated to interfere with the use of the groundwater as a source of drinking water.

Limitations and Uncertainty for the Water Quality Issues Evaluation for the Waldemar Water Supply

The water quality data reviewed includes data from 2000 to 2008. This is a limited time span making it difficult to identify trends, especially when not all parameters were sampled during each year. It is also noted that there are no monitoring wells for the water supply system.
5.1.6 Enumeration of Significant Drinking Water Quality Threats

As per the Technical Rules (MOE, 2009b), the enumeration of significant threats is required for the completion of the Assessment Report.

Data Sources for the Activity Threats Assessment of the Waldemar Water Supply

Enumerating land use activities that may be associated with prescribed drinking water threats was based on a review of multiple data sources, including public records, data provided through questionnaires completed by municipal officials, previous contaminant/historical land use information, and data collected during windshield surveys. No site specific information was collected; therefore, all drinking water threats are considered potential threats. As more site specific information becomes available during the source protection planning process, the presence of drinking water threats and their current level of management can be confirmed.

Ecolog ERIS Search

EcoLog Environmental Risk Information Services Ltd. (EcoLog ERIS) is a national database service, which provides specific environmental and real estate information for locations across Canada. A review of all available provincial, federal and private environmental databases was requested for the areas within a radius around the wells that included the outer edge of the WHPA-D. As a result, the search included data to the west of the Wellhead Protection Areas. The search included the following databases:

Federal Government Source Databases

- National PCB Inventory 1988-June 2004
- National Pollutant Release Inventory 1994-2004
- Environmental Issues Inventory System 1992-2001
- Contaminated Sites on Federal Land June 2000-2005
- Environmental Effects Monitoring 1992-2004
- Fisheries & Oceans Fuel Tanks 1964-September 2003
- Indian & Northern Affairs Fuel Tanks 1950-August 2003
- National Analysis of Trends in Emergencies System (NATES) 1974-1994
- National Defense & Canadian Forces Fuel Tanks Up to May 2001
- National Defense & Canadian Forces Spills March 1999-February 2005
- National Environmental Emergencies System (NEES) 1974-2003
- Parks Canada Fuel Storage Tanks 1920-January 2005
- Transport Canada Fuel Storage Tanks 1970-May 2003
- Provincial Government Source Databases
- Certificates of Approval 1985-September 2002
- Ontario Regulation 347 Waste Generators Summary 1985-2004
- Ontario Regulation 347 Waste Receivers Summary 1985-2004
- Private Fuel Storage Tanks 1989-1 996
- Ontario Inventory of PCB Storage Sites 1987-April 2003
- Compliance and Convictions 1989-2002
- Waste Disposal Sites — MOE CA Inventory 1970-September 2002
- Waste Disposal Sites — MOE 1991 Historical Approval Inventory Up to October 1990
- Occurrence Reporting Information System 1988-2002
- Pesticide Register 1988-August 2003
- Wastewater Discharger Registration Database 1990-1 998
• Coal Gasification Plants 1987, 1988
• Non-Compliance Reports 1992 (water only), 1994-2003
• Ministry Orders 1995-1 996
• Aggregate Inventory Up to May 2005
• Abandoned Aggregate Inventory Up to September 2002
• Abandoned Mines Inventory System 1800-2005
• Record of Site Condition 1997-September 2001
• Ontario Oil and Gas Wells (1999-Oct 2004; 1800-May 2004 available for 14 select counties)
• Drill Holes 1885-2005
• Mineral Occurrences 1845-October 2004
• Environmental Registry 1994-July 2003

Private Sources Databases

• Retail Fuel Storage Tanks 1989-June 2005
• Andersen's Waste Disposal Sites 1930-2004
• Scoff's Manufacturing Directory 1992-2005
• Chemical Register 1992,1999-June 2005
• Canadian Mine Locations 1998-2005
• Oil and Gas Wells October 2001 -2005
• Automobile Wrecking & Supplies 2001-June 2005
• Anderson’s Storage Tanks 191 5-1 953
• ERIS Historical Searches, March 1999-2005

The database search identified five items within the search radius around the Site. Two Certificates of Approval associated to the municipal water supply system were identified. Three items were identified by a search of the Occurrence Reporting Information System (spills) that may be potentially within the Wellhead Protection Areas. The exact locations were not provided (EcoLog ERIS, 2006).

Municipal Parcel Assessment Codes

Data from the Municipal Property Assessment Corporation (MPAC) was obtained from the GRCA. This data classifies parcels by land use and is generally used by Municipalities for tax purposes. For this reason it is a fairly up to date and a reliable source of information to identify land uses on a parcel basis. The data obtained was used for land use classification, where other data was not available, and for servicing information such as whether the parcel has water or sanitary services. The MPAC data was also useful in identifying agricultural land types.

Aerial Photo Interpretation

Historical aerial photographs were obtained from the University of Waterloo Map and Design Library and reviewed to identify land use changes and potential high-risk activities such as waste disposal sites within the WHPAs. Current aerial photography of the WHPAs was obtained from the GRCA Watershed orthoimagery. While the resolution of the photographs limits the detail that can be observed, the following is a summary of what can be discerned:

• 1978 Aerial Photography
The site inspection program confirmed the land uses noted in the most recent aerial photography.

- **2000 Aerial Photography**

The 2000 photograph revealed that land use within the well capture zone has remained largely unchanged since the 1978 photograph. Some development has occurred to the west of the production wells. The site inspection revealed this to be a community park. The residential area surrounding the wells is now almost fully developed. The agricultural lands noted in the previous aerial photograph appear to remain unchanged. A sand and gravel pit just east of 8th Line adjacent to Highway 109 was identified within the WHPA.

The site inspection program confirmed the land uses noted in the most recent aerial photography.

Site Reconnaissance and Inspection

A drive-by roadside inspection of the Wellhead Protection Areas was conducted on June 26, 2006 to verify and complement the dataset compiled during the records review portion of the assessment. The inspection consisted of a fence line/roadside documentation of the properties and their land uses included in the Wellhead Protection Area.

At the time of the inspection the predominant land uses included residential and agricultural activities. A residential subdivision surrounds the three production wells. All houses are serviced with municipally supplied water and use individual septic systems and natural gas heating.

A group of residential properties located outside of the subdivision were noted. The residential homes appeared to have individual wells and septic systems. It was assumed that these houses potentially have used fuel oil to heat their homes. Land east of the subdivision included meadows and cash crop fields. An operational sand and gravel pit is located on Highway 109. A proposed gravel pit was identified just east of 9th Line which would be located within WHPA-D. The area west of the Wellhead Protection Area includes a park, some residential uses and the Grand River. The pump house and associated water treatment equipment is located to the northeast of the Wellhead Protection Area.

Significant Drinking Water Quality Threats for the Waldemar Water Supply

Table 5-10 summarizes the significant threats identified in the Waldemar Wellhead Protection Areas. In the case of Waldemar, all significant threats occur in a WHPA-A, the 100 m radius circle around each of the supply wells.
Table 5-10: Waldemar Water Supply Significant Drinking Water Quality Threats

<table>
<thead>
<tr>
<th>PDWT¹ #</th>
<th>Threat Subcategory</th>
<th>Number of Activities</th>
<th>Vulnerable Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Application Of Untreated Septage To Land</td>
<td>1</td>
<td>WHPA-A</td>
</tr>
<tr>
<td>2</td>
<td>Sewage System Or Sewage Works - Septic System</td>
<td>35</td>
<td>WHPA-A</td>
</tr>
<tr>
<td>3</td>
<td>Application Of Agricultural Source Material (ASM) To Land</td>
<td>1</td>
<td>WHPA-A</td>
</tr>
<tr>
<td>6</td>
<td>Application Of Non-Agricultural Source Material (NASM) To Land (Including Treated Septage)</td>
<td>1</td>
<td>WHPA-A</td>
</tr>
<tr>
<td>10</td>
<td>Application Of Pesticide To Land</td>
<td>1</td>
<td>WHPA-A</td>
</tr>
</tbody>
</table>

Total Number of Properties: 36
Total Number of Activities: 39

1: Prescribed Drinking Water Threat Number refers to the prescribed drinking water threat listed in O.Reg 287/07 s.1.1.(1).
2: Where applicable, waste, sewage, and livestock threat numbers are reported by sub-threat; fuel and DNAPL by Prescribed Drinking Water Threat category.

Note: Certain types of activities on residential properties that are incidental in nature and that are significant drinking water threats are not enumerated. These threats include the application of commercial fertilizer on residential properties, the storage of organic solvents (dense non-aqueous phase liquids) on residential properties, and the storage of fuel (e.g., heating fuel tanks) on residential properties in natural gas serviced areas.

Note: Storm sewer piping is not considered to be part of a storm water management facility.

A review of the data for the Waldemar Water Supply System did not identify any Conditions or any Issues with the drinking water sources.

Limitations and Uncertainty for the Enumeration of Significant Drinking Water Threats for the Waldemar Water Supply

A number of databases were used to create the threats inventory database. All databases have an error associated with them, whether it applies to the spatial or attribute information. The accuracy of the databases used depends on the source, the age of the information and the scale at which the spatial information was recorded. In this study, a field reconnaissance was completed to confirm the data and to decrease the error in the database information.

The determination of land use activities used a series of assumptions which have an uncertainty associated to them. For this enumeration, it was assumed that any possible threats associated with an activity were present and that all potential chemicals were present. The circumstances and quantity for each threat were assigned based on available knowledge such as typical storage practices, typical chemical quantities and typical waste disposal practices for that particular land use activity.

Based on the uncertainty involved in the assumptions and data used, the uncertainty for threats enumeration has been classified as high, but this level of uncertainty is expected in desk top study. With regards to the location of the threats, however, there is low uncertainty as most locations were field verified.
5.2 Town of Grand Valley

5.2.1 Grand Valley Well Supply

The Town of Grand Valley is located about 20 km northwest of the Town of Orangeville and is part of Dufferin County (Map 5-11). The Village of Grand Valley is located on the southeast side of the Township along the Grand River. An assessment of the Town of Grand Valley drinking water supply was completed by R.J. Burnside & Associates in June 2010.

The Grand Valley Water Supply System provides water for the Village of Grand Valley which has population of approximately 1,600 residents.

The Grand Valley Water Supply System consists of two wellfields, the Grand Valley Wells (Well 1 (PW1) and Well 2 (PW2)) and the Melody Homes Wells (Well 3 (PW3) and Well 4 (PW4)). The Grand Valley Wells (Well 1 and Well 2) are located in the middle of the Village just east of the Grand River. The Melody Homes Wells (Well 3 and Well 4) are located on the south end of the Village beside the Melody Homes subdivision and as discussed below.

The Grand Valley Well field (Well 1 and Well 2) is located just east of the Grand River. The wells are completed into limestone bedrock below approximately 10 m of glaciofluvial deposits. Well 1 is 300 mm in diameter and was drilled to a depth of 86.6 m in 1991. Well 2 was drilled to a depth of 87 m in 1993 and is a 200 mm diameter standby well. The wells obtain water from a leaky confined bedrock aquifer. The average pumping rate for the well field is 185 L/min (Burnside, 2010b).

The Melody Homes Wells, Well 3 and Well 4, were drilled in 1988 to provide water for a 60 lot subdivision located at the south end of the Village. Well 3 is a 150 mm well with an open hole in the bedrock from 28.5 to 116.4 m. Well 4 is a 150 mm well completed as an open bedrock hole from 31.2 to 56.4 m. Both wells are completed in limestone bedrock. The bedrock in the area of the wells is protected by over 24 m of fine-grained overburden (Geo-Environ, 1989).

The Grand Valley Water Supply system operates under Permit to Take Water No. 93-P-2111 for Well 1 and Well 2 and No. 00-P-2661 for Well 3 and Well 4. Well 1 and Well 2 are permitted to pump at a combined maximum rate of 1,591.1 L/min and a maximum daily rate of 2,291,000 L/day. Well 3 is permitted to pump 454 L/min with a maximum daily of 654,000 L/day. Well 4 is permitted to pump 272 L/min with a maximum daily of 393,000 L/day. Well 4 is currently not in operation (Dufferin Water Co. Ltd, 2010a) and East Luther Grand Valley Council have passed a resolution to disconnect it and formally remove it from use.

Table 5-11, Table 5-12, and Table 5-13 provide a summary of the municipal supply wells, the system information and the average monthly and annual water taking.

<table>
<thead>
<tr>
<th>Well</th>
<th>Depth (m)</th>
<th>Open Interval</th>
<th>PTTW Number</th>
<th>Permitted Pumping Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well 1</td>
<td>86.6</td>
<td>8.2 m to 86.6 m</td>
<td>93-P-2111</td>
<td>1591.1 L/min</td>
</tr>
<tr>
<td>Well 2</td>
<td>86.9</td>
<td>15.2 m to 86.9 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well 3</td>
<td>116.4</td>
<td>28.5 m to 116.4 m</td>
<td>00-P-2661</td>
<td>454 L/min</td>
</tr>
<tr>
<td>Well 4</td>
<td>56.4</td>
<td>31.2 m to 56.4 m</td>
<td></td>
<td>272 L/min</td>
</tr>
</tbody>
</table>
Map 5-11: County of Dufferin Water Supply Serviced Areas in the Grand River Watershed
Table 5-12: Drinking Water System Information for the Grand Valley Water Supply

<table>
<thead>
<tr>
<th>DWS Number</th>
<th>DWS Name</th>
<th>Operating Authority</th>
<th>GW or SW</th>
<th>System Classification¹</th>
<th>Number of Users served²</th>
</tr>
</thead>
<tbody>
<tr>
<td>220007016</td>
<td>Grand Valley Well Supply</td>
<td>Corporation of the Town of Grand Valley</td>
<td>GW</td>
<td>Large Municipal Residential System</td>
<td>1,600</td>
</tr>
</tbody>
</table>

¹ as defined by O. Reg. 170/03 (Drinking Water Systems) made under the Safe Drinking Water Act, 2002.
² Dufferin Water Co. Ltd 2009 Grand Valley Summary Report (2010a)

Table 5-13: Annual and Monthly Average Pumping Rates for Grand Valley Water Supply

<table>
<thead>
<tr>
<th>Well or Intake</th>
<th>Annual Avg. Taking¹ (m³/d)</th>
<th>Monthly Average Taking¹ (m³/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jan</td>
<td>Feb</td>
</tr>
<tr>
<td>Well 1 (PW1)</td>
<td>148.04</td>
<td>150.8</td>
</tr>
<tr>
<td>Well 2 (PW2)</td>
<td>130.74</td>
<td>122.7</td>
</tr>
<tr>
<td>Well 3 (PW3)</td>
<td>127.12</td>
<td>121.0</td>
</tr>
</tbody>
</table>

¹ source: Dufferin Water Co. Ltd 2009 Grand Valley Summary Report (2010a)
² Grand Valley Well 4 (PW4) is offline

5.2.2 Vulnerability Analysis

Delineation of Wellhead Protection Areas

Wellhead Protection Areas (WHPAs) associated with the municipal water supply represent the areas within the aquifer that contribute groundwater to the well over a specific time period. Four Wellhead Protection Areas are specified, one a proximity zone and the others time-related capture zones:

Zone A 100m radius from wellhead
Zone B 2-year Time of Travel (TOT) capture zone
Zone C 5-year TOT capture zone
Zone D 25-year TOT capture zone.

Modelling Approach for the Grand Valley Well Supply

Wellhead Protection Areas for the Grand Valley Well Supply production wells were delineated as part of the study “Grand Valley, Waldemar, and Marsville GRCA Cut-Out Model” (Golder, 2010) using a FEFLOW groundwater model. This model was based on the regional scale GRCA model constructed by Waterloo Hydrogeologic (WHI) in 2005 and modified by AquaResource in 2008 as part of the water budget studies. The “Cut-Out” was improved upon and refined around the capture zones within Grand Valley, Waldemar and Marsville. The model was constructed and calibrated with available hydrogeological data and hydrogeological mapping products (Golder, 2010b).

The capture zones were developed for Wells 1, 2 and 3. Wells 1 and 2 were modelled as a combined well due to their close location. Well 4 is permanently off-line and thus a capture zone was not delineated for this well (Golder, 2010b).
The pumping rates used were selected based on historic and estimated future pumping rates. Since the pumping rates are not expected to increase over the next 25 years due to a lack of population growth, forecast pumping rates used for the capture zone delineation were based on historical average pumping rates (Golder, 2010b) and are provided in Table 5-14. The modelled rates have been compared to actual average pumping rates recorded in 2008 (DWCo. Ltd, 2009).

<table>
<thead>
<tr>
<th>Supply Wells</th>
<th>Modelled Pumping Rate</th>
<th>Actual Pumping Rate*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well 1 / Well 2</td>
<td>300 m³/day</td>
<td>291.5 m³/day</td>
</tr>
<tr>
<td>Well 3</td>
<td>133 m³/day</td>
<td>130.2 m³/day</td>
</tr>
<tr>
<td>Well 4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* Average daily pumping rate in 2008 (DWCo. Ltd, 2009)

To develop Time of Travel capture zones groundwater particles were released at the pumping wells in the model and tracked backwards towards their source of origin (recharge). At each well location, particles were released in all hydrostratigraphic units “open” to the wellbore. The time-related pathlines that are subsequently generated by the model from this analysis are then overlain and a single time of travel capture zone drawn around the “family” of pathlines generated at each well.

To account for uncertainty in the model a “shape factor” was applied to effectively increase the spatial coverage of each of the time of travel capture zones. The width and length of the capture zone was increased by 20 percent to account for some uncertainty in the hydraulic characteristics of the aquifer system and the orientation of the capture zone was adjusted by 5 degrees (plus and minus) to account for uncertainty in the regional groundwater flow direction.

Grand Valley Wellhead Protection Areas

The location and orientation of the WHPAs are shown in Map 5-12. The capture zone for Wells 1 and 2 extends in a northwest direction approximately 1,322 m from the wells and covers a total area of 112.5 ha. The capture zone for Well 3 extends southwest, approximately 1,270 m from the wells and covers a total area of 35.4 ha.

Delineation of WHPA-E and WHPA-F for the Grand Valley Well Supply

The Technical Rules (MOE, 2009b) require that all wells that are identified as groundwater under direct influence of surface water (GUDI) delineate an additional protection zone that is representative of its surface water vulnerability, known as a WHPA-E. GUDI wells are identified in accordance with subsection 2 (2) of O. Reg. 170/03 (Drinking Water Systems) of the Safe Drinking Water Act, 2002.

As part of the Engineer’s Report on the Grand Valley Water Supply System, Wells 1, 2, 3 and 4 were identified as not being impacted by surface water (Burnside, 2001a). This was based on microbiological data, raw water characterization and hydrogeological review. There were no microbiological Issues identified to suggest impacts from surface water.

Since the wells in this study have not been identified as GUDI, the delineation of a WHPA-E was not required. The Technical Rules also require that a WHPA-F be delineated for a well.
when the wells WHPA contains a WHPA-E and a drinking water issue is identified that originates outside of the areas WHPA-A through WHPA-E. Since a WHPA-E was not required for any of the wells, the delineation of a WHPA-F was also not required.

Peer Review

A peer review of the report *Vulnerability Analysis, Issues Evaluation and Threats Assessment, Town of Grand Valley* (Burnside, 2010a) was completed by Brian Luinstra of Luinstra Earth Sciences. The overall impressions of the report by the peer review are as follows:

“In the Peer Reviewer’s professional opinion, the overall results appear reasonable and are consistent with the requirements outlined in the Ontario Ministry of Environment Technical Rules for completion of the Assessment Report under the Clean Water Act, 2006. The overall approach to developing vulnerability scores, evaluating Issues and assessing threats are consistent with the Technical Rules.”

Responses to the peer review comments were incorporated into the final Report. The responses to the peer review comments enhanced the overall defensibility of the report but did not impact the outcome of the Wellhead Protection Areas or vulnerability scoring.

Uncertainty in the Delineation of the Grand Valley Wellhead Protection Areas

The delineation of the Wellhead Protection Areas was completed by Golder (2010b) through the use of a FEFLOW groundwater model. The model was completed based on a number of simplifying assumptions that incorporate some level of uncertainty that is dependent on the nature, spatial distribution and density of available data.

The groundwater model was calibrated to represent steady state conditions in the aquifer using static water levels from 1061 points. The NRMS error for the calibration is reported as being 6.1% which is considered to be within the acceptable limits of less than 10% for numerical models. The model calibration results were compared to reported pumping tests at the wells and showed a reasonable fit to the observed groundwater conditions recorded in the tests. Stream flow data was also used for calibration. Through the calibration process it was found that the hydraulic conductivities of the geological units, simulated flow pattern within the bedrock aquifer and modelled baseflows are in good agreement with site specific information (Golder, 2010b).

Uncertainties within the model are associated with limitations in the availability of subsurface information and can be related to projected variability in the aquifer properties (e.g. hydraulic conductivity; porosity) or uncertainties with the conceptual model (e.g. groundwater-surface water interactions; location of flow boundaries; recharge rates; continuity in aquitards; direction of regional groundwater flow).

To account for some of these uncertainties Golder has applied a factor of safety to the Wellhead Protection Areas. The factor of safety has been applied to two components of the Wellhead Protection Areas; the width and length of the capture zones were increased by 20% to account for uncertainty in the hydraulic characteristics of the aquifer system and the orientation of the capture zone was adjusted by 5 degrees (plus and minus) along its centre line to account for some uncertainty in the regional flow direction by increasing the width of the capture zones at increasing distances from the pumping well. This reflects the concept that the available data is typically concentrated around the pumping well and that the uncertainty in the hydrogeological understanding decreases at increasing distances from the supply wells (Golder, 2010b).
Based on known variations in hydraulic properties, the factor of safety approach is not considered to adequately address the issue of uncertainty. It is known that slight variations of aquifer properties may impact the shape and orientation of the capture zones. The safety factor, while attempting to cover some of this likely variation, does not give an indication of the likely impact of variations in actual model properties as there is no correlation between the factor of safety and the model parameters.

Although the calibration results were good, the lack of information on the impact of variations in model parameters on the resulting capture zones suggests that there has been inadequate work completed for the full evaluation of uncertainty.

Vulnerability Scoring in Wellhead Protection Areas

The completion of aquifer vulnerability scoring is outlined under Part VII, subsection VII.3 of the Technical Rules (MOE, 2009b). Mapping for this study was completed in three stages: i) development of aquifer vulnerability mapping ii) update of vulnerability due to transport pathways and iii) assignment of vulnerability scores.

Aquifer vulnerability mapping was completed within most of the Grand River watershed using the Surface to Aquifer Advection Time (SAAT) approach. The GRCA retained Earthfx to complete the vulnerability mapping using the SAAT method for the entire Grand River watershed (Earthfx, 2008). The SAAT approach estimates the average time required by a water particle to travel from a point at the ground surface to the aquifer of concern. The SAAT is approximated by using the vertical component of the advective velocity integrated over the vertical distance and the average porosity. The travel times generated are categorized into groups being <5 years, 5 to 25 years and >25 years.
Map 5-12: Grand Valley Well Supply Wellhead Protection Areas
Calculation of the SAAT values, as conducted by Earthfx, was based on the use of empirical formulae provided by the MOE. These formulae provide methods for the computation of two separate components of the SAAT, the unsaturated zone advection time (UZAT) and the water table to aquifer advection time (WAAT). UZAT was computed based on values assumed for depth to water table, mobile water content and infiltration rate. For the study a depth to water map was generated using an interpolated water table map and the elevation of the land surface. Mobile water content was approximated based on the specific yield of each soil type and infiltration was approximated using a GAWSER recharge model in which infiltration was assumed to be equal to the recharge rate. In areas where several layers of varying materials were present the calculations were done for each layer and then summed over the entire unsaturated portion of the sub-surface.

The WAAT component of the SAAT was also computed where required. It is noted by Earthfx that the WAAT was only computed in two instances; the first where the target aquifer was known to be confined and the second where no aquifer material was recognized. The factors included in the computation of the WAAT were aquifer porosity, thickness of the geologic layer, vertical hydraulic conductivity and the difference between the head in the confined aquifer and the water table.

Hydraulic conductivities were estimated based on the geologic materials listed in the boreholes logs. Vertical hydraulic gradients were estimated by subtracting the interpolated potentiometric surface from the interpolated water table. The thickness of each layer above the target aquifer and the location of the top of the target aquifer were determined from the borehole logs. Details of the procedures used for the completion of the SAAT analysis are included in the report entitled Aquifer Vulnerability Mapping for Norfolk, Brant Counties and Catfish Creek and Kettle Creek Watershed (Earthfx2008).

The SAAT travel times were grouped based on guidance provided by the MOE to create ratings which were then used to construct an aquifer vulnerability map of the study area. TOT values less than 5 years are rated as High Vulnerability. Values between 5 and 25 years are Medium vulnerability. Any value greater than 25 years is classified as having a Low Vulnerability. The various vulnerability ratings based on the travel times is shown in Table 5-15. The unadjusted intrinsic vulnerability is shown on Map 5-13.

<table>
<thead>
<tr>
<th>Time of Travel (years)</th>
<th>Vulnerability Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td><5</td>
<td>High</td>
</tr>
<tr>
<td>5 to 25</td>
<td>Medium</td>
</tr>
<tr>
<td>>25</td>
<td>Low</td>
</tr>
</tbody>
</table>

Vulnerability Scoring in Wellhead Protection Areas

As described in the Technical Rules (MOE, 2009b), a vulnerability score is assigned to each vulnerable area according to the groundwater's susceptibility to becoming contaminated and that contamination reaching a well. Within WHPAs the vulnerability score is calculated based on overlaying the SAAT aquifer vulnerability classification (high, medium, low) with the defined WHPAs.

The vulnerability scoring for the current study was completed in accordance with Rule 82 of the Technical Rules. Vulnerability scores range from 10 for areas with the highest vulnerability to 2 for areas with low vulnerability. Scores were assigned as per Table 2(a) in Part VII of the
Technical Rules (MOE, 2009b). A summary of the process used to define vulnerability scores is outlined in the Table 5-16. Map 5-17 shows the vulnerability scores assigned to the Grand Valley Wellhead Protection Areas.

<table>
<thead>
<tr>
<th>Table 5-16: Well Head Protection Area Vulnerability Scores – SAAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time of Travel Zone (WHPA)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>WHPA-A (100 m)</td>
</tr>
<tr>
<td>WHPA-B (2 yr TOT)</td>
</tr>
<tr>
<td>WHPA-C (5 yr TOT)</td>
</tr>
<tr>
<td>WHPA-D (25 yr TOT)</td>
</tr>
</tbody>
</table>

Vulnerability Scoring for the Grand Valley Wellhead Protection Areas

In Grand Valley, adjustments to the regional SAAT mapping were applied to assign bedrock outcrops as areas of high vulnerability and areas of less than 9 m of overburden thickness as high vulnerability. In addition, local qualitative adjustments were used to refine the alignment with the local SAAT scores. In addition, the well log for Well 3 was used to re-assign the SAAT result as low in the vicinity of Well 3 and Well 4 (Golder, 2010a).

Initial aquifer vulnerability scoring for the Grand Valley Wellhead Protection Areas is provided on Map 5-14. The mapping illustrates that the study area is a combination of high and moderate vulnerability with some low vulnerability located within the WHPA-D zone on the northwest side of the study area. High vulnerability has been mapped along bedrock outcrops along the Grand River valley and areas of thin overburden.

Uncertainty of Vulnerability Scoring for the Grand Valley Wellhead Protection Areas

Vulnerability assessment was completed by Earthfx on behalf of the GRCA in 2008 and was based on the Surface to Aquifer Advection Time (SAAT). The SAAT calculation was based on a number of empirical formulae provided in MOE’s Draft Guidance Modules (October 2006) that have not been incorporated into the Technical Rules (MOE, 2009b). Detailed descriptions of the methodology and associated assumptions for these calculations are included in the report *Aquifer Vulnerability mapping for Norfolk, Brant Counties, Catfish Creek and Kettle Creek watershed* (Earthfx, 2008).

The calculation of SAAT is made up of two components; the unsaturated zone advection time (UZAT) and the water table to aquifer advection time (WAAT). In the Earthfx study both components were computed based on simplifying assumptions included in MOE provided formulae. It was noted that the UZAT was computed based on estimates for groundwater recharge derived from a GAWSER model. Also values for specific yield of soils were obtained from existing literature. The results of the UZAT analysis showed a high degree of variance which may be attributed to variance in the input GAWSER model. The results of the analysis indicate that there is a 95.5% certainty that the UZAT time calculated is within +/-42 years of the actual time at any well. This indicates that the variability of the UZAT value (margin of error) is greater than the divisions of the vulnerability range i.e. the vulnerability could vary across the entire range of classifications from low to medium or high based on its margin of error. The potential for this high variation indicates that the uncertainty related to this component is high.

UZAT was computed at various water well points across the study area. There was considerable effort made within the study to improve the quality of the spatial and lithologic data.
provided by each data point. In this regard only wells with a location accuracy of less than 100 m were used as part of the study. It can be interpreted that the computations performed represented values that were correct spatially across the study area.

The second component of the SAAT vulnerability, WAAT, was computed based on a formula provided by the MOE and was applied in areas where the target aquifer was known to be confined or where no aquifer material was recognized. The calculation assumes that flow within this zone can be approximated by the Darcy law for groundwater flow. The results of a statistical analysis indicate a high variance in the computed values which points to a high variance and high degree of uncertainty in the underlying data. The computation is known to be dependent on estimates of hydraulic properties, and interpolation of potentiometric surfaces which are based on sparse and unreliable data. The resulting product can be regarded as being an amalgamation of all the primary data uncertainties. Based on the uncertainty associated with the input data it is concluded that the WAAT calculation can be regarded as having a high uncertainty.

Finally the SAAT is derived by combining the previously discussed components of UZAT and WAAT. It is noted that the UZAT was computed using a GAWSER model to estimate recharge. The GAWSER model is known to be built on certain simplifying assumptions that have not been expounded in the background report from Earthfx. In light of this no level of uncertainty can be attached to the results of this model. Using the results of the UZAT and WAAT calculations as outlined in the Earthfx report it is concluded that the level of uncertainty associated with the computation of SAAT is high. While the corrections applied to well locations resulted in spatially correct analyses, the underlying uncertainty in the computations themselves results in an overall ranking of high uncertainty for the process.

The Earthfx team performed a comparative analysis of vulnerability methods using Intrinsic Susceptibility Index (ISI) to compare with the values for SAAT. It was indicated that the SAAT ranking compared favourably to the ISI in the high vulnerability areas with more significant deviations in the medium and low ranked areas. The statistical analysis performed on the ISI however indicated that there was also a high uncertainty in these values.

Identification of Transport Pathways and Vulnerability Adjustment

Rules 39 to 41 of the Technical Rules (MOE, 2009b) allows for an increase in vulnerability rating of an aquifer due to the presence of transport pathways that may increase the vulnerability of the aquifer by providing a conduit for contaminants to bypass the natural protection of the aquifer.

Transport pathways are developed where natural or man-made features in the aquifer provide a path along which contaminants can migrate to the regional aquifer. The presence of the transport pathways should be accounted for in the vulnerability assessment and these pathways may include private water wells, unused water wells, abandoned water wells, construction of underground services, subsurface excavations, pits and quarries. The vulnerability of an area may be increased from low, to medium or high and from medium, to high based on the presence of transport pathways.
Map 5-13 Grand Valley Well Supply Unadjusted Intrinsic Vulnerability
Map 5-14: Grand Valley Well Supply Wellhead Protection Area Initial Vulnerability
Map 5-15: Grand Valley Well Supply Wellhead Protection Area Transport Pathways
Map 5-16: Grand Valley Well Supply Wellhead Protection Area Transport Pathways Area of Influence
Map 5-17: Grand Valley Well Supply Wellhead Protection Area Final Vulnerability

[Map of Grand Valley Well Supply Wellhead Protection Area with vulnerability levels indicated by color-coded areas.]
Transport Pathways in the Grand Valley Wellhead Protection Areas

Water Wells

A review of water well records from the MOE water well database and a field survey were conducted to identify wells within the 5 year time of travel zone (WHPA-C). The wells were then evaluated and ranked based on their risk to the supply aquifer. The risk evaluation process included an analysis of the age of the well and its likely condition as well as where possible a visual inspection of the well.

Prior to the provision of municipal water in Grand Valley, the majority of residents used individual wells for their water supply. The majority of these wells were never decommissioned in accordance with MOE Ontario Regulation 903 guidelines. The survey and field verification resulted in the identification of 38 water wells within the 5 year (Zones A, B and C) time of travel and classified 25 of the wells as high risk wells.

Residential Septic Systems

In areas where no municipal sewerage systems exist, residences are assumed to be using individual septic systems. Septic systems are considered transport pathways as they can provide a conduit for contaminants to travel through the ground to the water table. Septic systems are generally built in the upper few metres of the sub-surface and consist of a tank and drainage tiles from which the sewage discharge infiltrates into the ground. In the case of thin confining layers or in unconfined aquifer conditions, these shallow penetrating systems may present a significant conduit for contaminants to the aquifer of concern. Septic systems are assumed to be used by all rural residences outside of the village limits. For Wells 1 and 2 the majority of the Wellhead Protection Area is located within the village where there is wastewater servicing. WHPA-C and D for Wells 3 and 4 are outside the serviced area, but the area is agricultural with no houses.

Utilities

Utilities that are constructed in the sub-surface are potential transport pathways as the disturbed soil surrounding them can provide a pathway for contaminants to enter into the aquifer below. Utilities that may act as transport pathways include storm-water trunk sewers and sanitary infrastructure. The depth of excavation for the construction of utilities will determine the risk that the wells pose on the municipal supply aquifer. The Village of Grand Valley is serviced with storm-water trunk sewers and sanitary sewers.

Surface Water Features

Surface water features can be considered transport pathways as they can create a short cut to the aquifer for contaminants, especially when the features are man-made such as man-made pond, dugouts and aggregate extraction ponds. There were no surface water features identified within the Wellhead Protection Areas.

Aggregate Operations

Aggregate operations are defined as activities that involve the extraction of material from the surface and in the current study include both pits and quarries. Pits and quarries present a transport pathway as their creation serves to remove a potential layer or layers of protection from the regional aquifer. In some cases, these excavations may extend to below the groundwater table, in which case the pit or quarry is a direct conduit to the aquifer from which the municipal source draws its water.
As part of the current study aggregate operations have been mapped based on existing databases and the review of aerial photography and satellite imagery along with a windshield survey of the Wellhead Protection Areas. A large aggregate operation is located southeast of Wells 1 and 2 in a portion of the Wellhead Protection Area.

Adjusted Vulnerability Scoring for the Grand Valley Wellhead Protection Areas

Within the current study, to account for the presence of high risk wells as potential transport pathways, increases in vulnerability were applied in areas with a high density of high risk wells. For this evaluation a visual survey of high risk well locations was undertaken and where there was a significant concentration of well points the update was made.

The increase in vulnerability due to transport pathways was applied around the Village limits due to the high density of unused wells and the presence of underground infrastructure. There are a large number of wells are located within the serviced areas. These wells may not be properly abandoned and present a risk to supply aquifer. Sewer lines and other underground utilities within the Village limits may also present a risk to the aquifer in areas of thin overburden. The footprint of the aggregate operation within the Wellhead Protection Area was also increased to high vulnerability. The transport pathways and areas of influence for vulnerability scoring are shown on Map 5-15 and Map 5-16 respectively. The final aquifer vulnerability scoring for the Grand Valley Wellhead Protection Areas is shown on Map 5-17.

Uncertainty in the Identification of Transport Pathways

In this study the aquifer vulnerability was modified to consider increases in vulnerability due to transport pathways within the Wellhead Protection Areas. For this study the vulnerability was increased around the Village limits due to the high density of unused wells and the presence of underground infrastructure. The exact locations of the wells are not known however the presence of wells indicates that the area was not serviced at the time the houses were built and a well can be assumed to be present at all houses with low uncertainty. The presence of underground infrastructure is also low uncertainty. The vulnerability was also increased around the footprint of a sand and gravel pit based on air photography. This footprint may change in the future, however, the uncertainty can be considered low since it is based on local field observations.

Managed Lands within the Grand Valley Wellhead Protection Area

Managed lands are lands that may receive agricultural source material (ASM), non-agricultural source material (NASM) or commercial fertilizer and can be divided into 2 categories of agricultural managed lands (AML) and non-agricultural managed lands. Agricultural managed lands include cropland, fallow and improved pasture that may receive ASM. Non-agricultural managed lands may include golf courses, sports fields, residential lawns and other built-up grassed areas or turf that may have commercial fertilizers applied.

Calculation of the percentage of managed lands was done in accordance with Part II, Rule 16(9) of the Technical Rules (MOE, 2009b). Similar to the calculation of impervious surfaces, mapping the percentage of managed lands area is not required where the vulnerability score for an area is less than the vulnerability score necessary for the activity to be considered a significant threat. Therefore, the percentage of managed lands was only calculated where the vulnerability score in each Wellhead Protection Area was 6 or greater. This criterion was used to determine the need to calculate managed lands surrounding the wells in the Grand Valley Well Supply (see Table 5-17).
Table 5-17: Grand Valley Wellhead Protection Areas with Vulnerability Scores of 6 or Higher

<table>
<thead>
<tr>
<th>Township</th>
<th>Location</th>
<th>Well</th>
<th>WHPA-A</th>
<th>WHPA-B</th>
<th>WHPA-C</th>
<th>WHPA-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Luther-Grand Valley</td>
<td>East Luther Grand Valley</td>
<td>Wells 1 & 2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wells 3</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Methodology for Calculating Managed Land Percentage

Each Wellhead Protection Area zone that required assessment for managed lands was mapped and using ArcGIS, was selected. The MPAC property layer with the associated farm code data table was overlaid over the WHPAs and all the properties that fell entirely or partially within the WHPA were selected for assessment. A union of these two layers was completed to determine the area of each parcel that only fell within the Wellhead Protection Area.

The GIS layers for wooded areas, wetlands (GRCA) and drainage (polygons determining spatial extent, not just linear location) were used to determine the extent of these land uses and were excluded from the calculation of managed lands.

Non-agricultural managed lands (NAML) were determined predominantly by using MPAC data, and this was supplemented by air photo interpretation using 2006 orthoimagery. Certain areas such as single residential unit parcels were analyzed for NAML area through air photo interpretation.

The percentage of NAML for residential parcels was between 60-65% for Grand Valley, 80% for Waldemar, and 70% for Marsville. Areas that had no managed lands included parcels with completely impervious cover, natural areas of scrubland, or the like. Using attributes as described by the MPAC category and air photo interpretation, other areas were assessed to determine the percentage of NAML within the parcels in the Wellhead Protection Areas in the same method. These percentages of NAML were multiplied by the area to get the amount of NAML in each parcel. The sum of all the NAML areas for the parcels within the Wellhead Protection Area was divided by the total area of the Wellhead Protection Area to get the percentage of NAML.

Farm codes were supplied in a separate table that was joined to the MPAC parcels to determine which parcels had the potential for application of ASM. Non-farm parcels were not coded (“Not Defined” in the Farm Operation code) and were assumed to not be agricultural in nature, unless the air photo was interpreted otherwise. AML includes cropland, improved pasture and fallow. The land area of these agricultural lands was summed then calculated as a percentage of the Wellhead Protection Area.

The area of NAML and the area of AML were then summed together and subsequently divided by the total area of the Wellhead Protection Area to get the percentage of managed lands.

The results of the calculations for managed lands are provided in Table 5-18 and Map 5-18 for the Grand Valley Wellhead Protection Area. The coding of N/A indicates that the vulnerability score in this area is 4 or less, and this area has not been assessed.
Table 5-18: Managed Lands Percentage in the Grand Valley Wellhead Protection Areas

<table>
<thead>
<tr>
<th>Township</th>
<th>Location</th>
<th>Well</th>
<th>WHPA-A</th>
<th>WHPA-B</th>
<th>WHPA-C</th>
<th>WHPA-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Luther-Grand Valley</td>
<td>East Luther</td>
<td>Wells 1 & 2</td>
<td>42.17%</td>
<td>32.21%</td>
<td>29.06%</td>
<td>22.15%</td>
</tr>
<tr>
<td></td>
<td>Grand Valley</td>
<td>Wells 3</td>
<td>39.42%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Livestock Density within the Grand Valley Wellhead Protection Area

Livestock density is used as a surrogate measure of the potential for generating, storing and land applying agricultural source material as a source of nutrients vulnerable areas. The livestock density is expressed as nutrient units per acre (NU/Acre) and is calculated based on the number of animals housed, or pastured on a farm unit that generates enough manure to fertilize an area of land.

Livestock density is combined with the results of the computations for percentage agricultural managed land for the purposes of determining the circumstances related to the application of nutrients and the associated threats as defined by the MOE’s Table of Drinking Water Threats.

Methodology for Calculating Livestock Density

As stated previously, the farm operation code table joined to the MPAC layer was used to determine what type of farming took place in each parcel. In addition, air photo interpretation was used to determine farm structures on each parcel.

The first screening of the air photo was to determine whether barns were present on a parcel that fell either partially or entirely within each Wellhead Protection Area. The parcels that were used were the same ones cut for the Managed Lands Methodology above. The barns on farms with codes not related to livestock (such as ‘cash crops – feed and seed’) were looked at but often quickly ruled out as livestock barns due to the farm code description.

Barns on farm parcels with codes related to livestock were looked at more carefully to determine what type of livestock could be housed and in which structures. Air photo interpretation with some knowledge of key identifying features of housing structures and land use practices allowed some confidence in selecting the correct structure as a livestock housing structure.

Once a livestock housing barn was selected, the type of livestock that was assumed to be housed in the barn was estimated with help from the farm code description and air photo interpretation. A polygon was drawn to cover the footprint of the structure to represent the area of housing space for the livestock. The area of the barn was multiplied by the conversion factor for that livestock type, relating the area of the barn (in square metres) per Nutrient Unit, as supplied by OMAFRA in the Technical Memorandum issued by GRCA for Lake Erie Region Technical Studies (September 23, 2009) (GRCA, 2009a). This amount of nutrients is assumed to be applied to all the AML area on that farm unit evenly.

To verify the air photo interpretation, drive-by site visits were done to capture a photograph of the barn from the road-side.

Once all the livestock barns were found and the NU’s calculated, the total NU applied to only the area within the Wellhead Protection Area is needed. Using area weighting, the livestock density
(in NU/acre) of each farm parcel was applied to only the area within the Wellhead Protection Area and summed with all the other NU calculations on farm parcels in the Wellhead Protection Area.

The total NU generated by all the barns is divided by the total AML in the Wellhead Protection Area, regardless of the type of farm (livestock or non-livestock). The livestock density in the Wellhead Protection Area is thus the sum of all NU applied within the WHPA divided by the total AML area (in acres).

The results of the calculations livestock density are provided in Table 5-19 and Map 5-19 for the Grand Valley Wellhead Protection Area. In Table 5-19, the coding of 0 indicates that there were no agricultural livestock barns to contribute nutrients and therefore the value for livestock density is 0. The coding of N/A indicates that the vulnerability score in this area is 4 or less, and this area has not been assessed.

<table>
<thead>
<tr>
<th>Township</th>
<th>Location</th>
<th>Well</th>
<th>WHPA-A</th>
<th>WHPA-B</th>
<th>WHPA-C</th>
<th>WHPA-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Luther-Grand Valley</td>
<td>Grand Valley</td>
<td>Wells 1 & 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wells 3</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Assumptions While Assigning Non-Agricultural Managed Lands
Some default values were used for estimating NAML based on the air photo interpretations and for ease of calculating. Roads generally had right-of-ways that were about 50% of the parcel size while the rest was the actual roadway, so most of these parcels were given NAML percentage of 50%. Parks or other open green-space that were interpreted as turf or grass were all assumed to have commercial fertilizers applied and thus defined as managed lands.

Percent Impervious Surface Area within the Grand Valley Wellhead Protection Areas
Impervious surfaces are defined in the Technical Rules (MOE, 2009b) as areas that receive road salt application and include roads and parking lots. The areas were determined using road mapping from the National Road Network (Natural Resources Canada) and satellite air photography to identify large parking lots and paved areas. Using a 1 km x 1 km grid centered over each vulnerability area, the percentage of impermeable surfaces within each square kilometre was calculated. The percentage of total impervious surface areas within each square kilometre of vulnerable areas is shown in Map 5-20. The percentage of impervious surfaces is an indicator for the potential for impacts due to road salt. In areas with a high percentage of impervious surfaces (roads) there is an increased likelihood that road salt would be applied. Impervious surfaces ranged from <1% to 5.4% in the wellfields.
Map 5-18: Grand Valley Well Supply Percent Managed Lands
Map 5-19: Grand Valley Well Supply Livestock Density
Map 5-20: Grand Valley Percent Impervious Surfaces

- Lower Tier Municipal Boundary
- Municipal Well
- Roads
- Railway
- Streams
- Lake/Reservoir

Impervious Surface Related to Road Salt

Percent Impervious
- < 1%
- 1 to < 8%
- 8 to < 80%
- >= 80%

Map created: 01-Oct-2010

TOWNSHIP OF EAST LUTHER GRAND VALLEY

Boyné Creek
5.2.3 Drinking Water Threats Assessment

The Ontario Clean Water Act, 2006 defines a Drinking Water Threat as “an activity or condition that adversely affects or has the potential to adversely affect the quality or quantity of any water that is or may be used as a source of drinking water, and includes an activity or condition that is prescribed by the regulation as a drinking water threat.”

The Technical Rules (MOE, 2009) list five ways in which to identify a drinking water threat:

a) Through an activity prescribed by the Act as a Prescribed Drinking Water Threat;

b) Through an activity identified by the Source Water Protection Committee as an activity that may be a threat and (in the opinion of the Director) a hazard assessment confirms that the activity is a threat;

c) Through a condition that has resulted from past activities that could affect the quality of drinking water;

d) Through an activity associated with a drinking water issue; and

e) Through an activity identified through the events based approach (this approach has not been used in this Assessment Report).

Activities that Are or Would be Drinking Water Quality Threats in the Wellhead Protection Areas

Ontario Regulation 287/07, pursuant to the Clean Water Act, provides a list of Prescribed Drinking Water Threats that could constitute a threat to drinking water sources. Table 5-20 lists the activities that are prescribed as water quality related prescribed drinking water threats. Listed beside the prescribed drinking water threats are the typical land use activities that are associated with the threat.

In addition, there is one local threat that has been identified in the Lake Erie Source Protection Region: the transportation of oil and fuel products through a pipeline.

A spill of oil and fuel products could result in the presence of petroleum hydrocarbons or BTEX in groundwater. The conveyance of oil by way of an underground pipeline that would be designated as transmitting or distributing “liquid hydrocarbons”, including “crude oil”, “condensate”, or “liquid petroleum products”, and not including “natural gas liquids” or “liquefied petroleum gas”, within the meaning of Ontario Regulation 210/01 under the Technical Standards and Safety Act or is subject to the National Energy Board Act, was approved as a local threat. The letter of approval from the Director of the Source Protection Programs Branch and table of hazard ratings is found in Appendix D.

<table>
<thead>
<tr>
<th>Table 5-20: Drinking Water Threats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prescribed Drinking Water Threat</td>
</tr>
<tr>
<td>Ontario Regulation 287/07 s.1.1.(1)</td>
</tr>
<tr>
<td>1 The establishment, operation or maintenance of a waste disposal site within the meaning of Part V of the Environmental Protection Act.</td>
</tr>
<tr>
<td>2 The establishment, operation or maintenance of a system that collects, stores, transmits, treats or disposes of</td>
</tr>
</tbody>
</table>
Table 5-20: Drinking Water Threats

<table>
<thead>
<tr>
<th>Local Drinking Water Threat</th>
<th>Land Use / Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>The conveyance of oil by way of an underground pipeline that would be designated as transmitting or distributing “liquid hydrocarbons”, including “crude oil”, “condensate”, or “liquid petroleum products”, and not including “natural gas liquids” or “liquefied petroleum gas”, within the meaning of the Ontario Regulation 210/01 under the Technical Standards and Safety Act or is subject to the National Energy Board Act. ¹</td>
<td>Oil pipeline</td>
</tr>
</tbody>
</table>

Identification of Significant, Moderate and Low Drinking Water Quality Threats for the Grand Valley Well Supply

The identification of a land use activity as a significant, moderate, or low drinking water threat depends on its risk score, determined by considering the circumstances of the activity and the type and vulnerability score of any underlying protection zones, as set out in the Tables of Drinking Water Threats available through www.sourcewater.ca. Information on drinking water threats is also accessible through the Source Water Protection Threats Tool: http://swpip.ca. For local threats, the risk score is calculated as per the Director’s Approval Letter, as shown in Appendix C. The information above can be used with the vulnerability scores shown in Map 5-17 to help the public determine where certain activities are or would be significant, moderate and low drinking water threats.

¹: As confirmed by the letter from the Director of the Source Protection Programs Branch in Appendix D
Table 5-21 provides a summary of the threat levels possible in the Grand Valley Well Supply for Chemical, Dense Non-Aqueous Phase Liquid (DNAPL), Pathogen, and Local Threats (Oil Pipelines). A checkmark indicates that the threat classification level is possible for the indicated threat type under the corresponding vulnerable area / vulnerable score; a blank cell indicates that it is not. The colours shown for each vulnerability score correspond to those shown in Map 5-17.

Table 5-21: Identification of Drinking Water Quality Threats in the Grand Valley Wellhead Protection Areas

<table>
<thead>
<tr>
<th>Threat Type</th>
<th>Vulnerable Area</th>
<th>Vulnerability Score</th>
<th>Threat Classification Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Significant 80+</td>
</tr>
<tr>
<td>Chemicals</td>
<td></td>
<td></td>
<td>![Checkmark]</td>
</tr>
<tr>
<td>WHPA-A/B</td>
<td>10</td>
<td>![Red]</td>
<td>![Checkmark]</td>
</tr>
<tr>
<td>WHPA-B/C</td>
<td>8</td>
<td>![Yellow]</td>
<td>![Checkmark]</td>
</tr>
<tr>
<td>WHPA-B/C/D</td>
<td>6</td>
<td>![Green]</td>
<td>![Checkmark]</td>
</tr>
<tr>
<td>WHPA-C/D</td>
<td>2 & 4</td>
<td>![Blue]</td>
<td>![Checkmark]</td>
</tr>
<tr>
<td>Handling / Storage of DNAPLs</td>
<td>WHPA-A/B/C</td>
<td>Any Score</td>
<td>![Checkmark]</td>
</tr>
<tr>
<td>WHPA-D</td>
<td>6</td>
<td>![Green]</td>
<td>![Checkmark]</td>
</tr>
<tr>
<td>WHPA-D</td>
<td>2 & 4</td>
<td>![Blue]</td>
<td>![Checkmark]</td>
</tr>
<tr>
<td>Pathogens</td>
<td></td>
<td></td>
<td>![Checkmark]</td>
</tr>
<tr>
<td>WHPA-A/B</td>
<td>10</td>
<td>![Red]</td>
<td>![Checkmark]</td>
</tr>
<tr>
<td>WHPA-B</td>
<td>8</td>
<td>![Yellow]</td>
<td>![Checkmark]</td>
</tr>
<tr>
<td>WHPA-B</td>
<td>6</td>
<td>![Green]</td>
<td>![Checkmark]</td>
</tr>
<tr>
<td>WHPA-C/D</td>
<td>Any Score</td>
<td>![Blue]</td>
<td>![Checkmark]</td>
</tr>
<tr>
<td>Local Threat (Oil Pipelines)</td>
<td>WHPA-A/B</td>
<td>10</td>
<td>![Checkmark]</td>
</tr>
<tr>
<td>WHPA-B/C</td>
<td>8</td>
<td>![Yellow]</td>
<td>![Checkmark]</td>
</tr>
<tr>
<td>WHPA-B/C/D</td>
<td>6</td>
<td>![Green]</td>
<td>![Checkmark]</td>
</tr>
<tr>
<td>WHPA-C/D</td>
<td>2 & 4</td>
<td>![Blue]</td>
<td>![Checkmark]</td>
</tr>
</tbody>
</table>

5.2.4 Conditions Evaluation

In addition to present land use activities, any conditions resulting from past activities are also considered drinking water threats. As described in the Technical Rules (MOE, 2009b), the following conditions are considered drinking water threats to groundwater sources if located within vulnerable areas:

- The presence of a non-aqueous phase liquid in groundwater in a HVA, SGRA or Wellhead Protection Area;
- The presence of a contaminant in groundwater in a HVA, SGRA or a WHPA, if the contaminant is listed in Table 2 of the Soil, Groundwater and Sediment Standards and is present at a concentration that exceeds the potable groundwater standard set out for the contaminant in the Table;

Conditions Evaluation for the Grand Valley Well Supply

A review of available data regarding potential contamination within the WHPAs was completed. Data available included databases from the Ecolog ERIS results such as Record of Site...
Condition, MOE Spills Database and Occurrence Reporting Information System and data collected in previous groundwater studies.

Ecolog ERIS databases did not identify any contamination recorded in the Record of Site Condition, MOE Spills Database and Occurrence Reporting Information Centre.

A known contaminated site was identified in a previous study (Burnside, 2001a) on Mill Street within the WHPA-B for Wells 1 and 2 (Map 5-12). The site is reported to have been a bulk fuel depot with underground storage tanks (Burnside, 2001a). The site was identified by a review of MOE contaminated site databases and is recorded as MOE Project No. 4112. A report on the site was completed by MGI Limited in 1999 and reported groundwater samples with concentrations of various pollutants including, 0.096 mg/L benzene, 0.482 mg/L ethylbenzene, 1.79 mg/L xylene and 0.0755 mg/L 1-methylnaphthalene. These concentrations exceed the maximum concentrations of benzene, ethylbenzene, xylene, and 1-methylnaphthalene standards in Table 2 of Soil, Ground Water and Sediment Standards. The report documents that the groundwater plume has moved 60 m south and that the average shallow groundwater velocity is 4 m/year.

Based on this information the plume may have moved an additional 44 m since the report in 1999 and the contamination has moved off of the property. The Condition is given a hazard rating of 10 since the plume has moved off-site, and it has a vulnerability score of 10 because it is located in WHPA-B. The calculated risk score is 100 and the Condition is, therefore, identified as a significant drinking water threat.

5.2.5 Drinking Water Quality Issues Evaluation

The objective of the Issues evaluation is to identify drinking water Issues where the existing or trending concentration of a parameter or pathogen at an intake, well or monitoring well would result in the deterioration of the quality of water for use as a source of drinking water. The parameter or pathogen must be listed in Schedule 1, 2 or 3 of the Ontario Drinking Water Quality Standards (ODWQS) or Table 4 of the Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines (Technical Rules XI.1 (114 – 117)).

Once a drinking water Issue is identified, the objective is to identify all sources and threats that may contribute to the issue within an Issue Contributing Area and manage these threats appropriately. If at this time the Issue Contributing Area cannot be identified or the Issue cannot be linked to threats then a work plan must be provided to assess the possible link.

If an Issue is identified for an intake, well or monitoring well, then all threats related to a particular Issue within the Issue Contributing Areas are as significant drinking water threats, regardless of the vulnerability.

Methodology for Water Quality Issues Evaluation for the Grand Valley Well Supply

As part of the Issues evaluation, review of available water quality data was conducted to assess whether any contaminants are impacting or have the potential to impact or interfere with the Grand Valley Water Supply System. This included the following steps:

- Collection of water quality data.
- Comparison of water quality data to the ODWQS to see if any parameters were in exceedance.
Concentrations of parameters of consideration over time were plotted to evaluate if there were any increasing trends. Operator Interview.

Data Sources for Water Quality Issues Evaluation for the Grand Valley Well Supply
All available water quality data for the Grand Valley water supply wells was collected and reviewed. This included engineering reports and MOE Annual reports for the water supply systems.

Water Quality Issues Evaluation for the Grand Valley Well Supply
Historical water quality data was collected and reviewed for samples taken between 1991 and 2000. The data showed regular exceedances of the Maximum Allowable Concentration (MAC) ODWQS for the parameters of hardness and fluoride (Burnside, 2001a).

Historical water quality data for the Grand Valley wells indicate that the water is traditionally very hard and often exceeds the ODWQS standards. Hardness concentrations measured between 1991 and 2000 ranged between 217 mg/L and 850 mg/L. This is above the Operational Guideline of the ODWQS range of 80-100 mg/L (Burnside, 2001a). This level is typical of drinking water obtained from a dolostone bedrock source and is not considered a condition that threatens the groundwater as a safe drinking water source.

All wells have elevated naturally occurring fluoride content which often exceeds the ODWQS MAC of 1.5 mg/L. The results from 1991 to 2000 show fluoride concentrations ranging from 0.02 mg/L to 1.8 mg/L. In 2000, all wells had fluoride exceedances ranging from 1.6 to 1.8 mg/L (Burnside 2001a). In 2003 fluoride levels ranged from 1.4-1.7 mg/L and in 2008 fluoride was recorded at 1.8 mg/L.

Elevated sodium concentrations have been recorded in the Grand Valley wells. Sodium concentrations in Well 1 and Well 2 ranged from 10 to 36 mg/L and sodium concentrations in Wells 3 and 4 ranged from 4 mg/L to 24.8 mg/L. The ODWQS MAC for sodium is 200 mg/L, however the local Medical Officer of Health should be notified when sodium concentrations exceed 20 mg/L.

A review of available microbiological data for the Grand Valley Water Supply wells for years 2000, 2005, and 2006 to 2009. No issues with total coliforms or E.coli have been documented.

Water Operator Interview
The operator of the Grand Valley system from Dufferin Water Systems was consulted to identify any issues that may result in the deterioration of the water quality. No water quality issues under Technical Rule 114 at the Grand Valley Water Supply System were identified.

Summary of Water Quality Issues Evaluation for Grand Valley Well Supply
Upon review of available current drinking water quality data there are no issues for the Grand Valley wells. Hardness and fluoride have elevated concentrations however are naturally occurring and therefore do not reflect a deterioration of water quality. Sodium concentrations do not exceed the ODWQS and do not show any increasing trends. None of the above parameters
are currently interfering or anticipated to interfere with the use of the groundwater as a source of drinking water.

Limitations and Uncertainty for the Water Quality Issues Evaluation for the Grand Valley Well Supply

The water quality data reviewed includes data from 1991 to 2009 however not all parameters were sampled during each year. This makes it difficult to identify trends. It is also noted that there is no monitoring well water quality data available. Monitoring wells are only monitored for water levels as part of PTTW requirements.

5.2.6 Enumeration of Significant Drinking Water Threats

The Technical Rules (MOE, 2009b) require an estimation of the number of locations at which an Activity is a significant drinking water threat and the number of locations at which a Condition resulting from past activity is a significant drinking water threat.

The threats enumeration was compiled using the data from various sources that were reviewed as part of this study. Following the preliminary research, field assessments were used to verify and complete the threats inventory process. As a conservative measure no effort to include the impact of management techniques that may be employed at any threat location was considered. It can therefore be concluded that the level of uncertainty associated with this enumeration is high. A re-evaluation of the prioritized threats is required if the level of uncertainty associated with the current results is to be reduced.

Data Sources for the Activity Threats Assessment of the Grand Valley Well Supply

The threats inventory was compiled using the data and information sources outlined below. Following the preliminary research field assessments were conducted to complete the threats inventory. All threats were recorded in a database provided by the MOE. EcoLog Environmental Risk Information Services Ltd. (EcoLog ERIS) is a national database service, which provides specific environmental and real estate information for locations across Canada. A review of all available provincial, federal and private environmental databases was requested for the areas within a prescribed radius around the wells’ WHPAs. The search included the following databases:

Federal Government Source Databases

- National PCB Inventory 1988-June 2004
- National Pollutant Release Inventory 1994-2004
- Environmental Issues Inventory System 1992-2001
- Contaminated Sites on Federal Land June 2000-2005
- Environmental Effects Monitoring 1992-2004
- Fisheries & Oceans Fuel Tanks 1964-September 2003
- Indian & Northern Affairs Fuel Tanks 1950-August 2003
- National Analysis of Trends in Emergencies System (NATES) 1974-1994
- National Defense & Canadian Forces Fuel Tanks Up to May 2001
- National Defense & Canadian Forces Spills March 1999-February 2005
- National Environmental Emergencies System (NEES) 1974-2003
- Parks Canada Fuel Storage Tanks 1920-January 2005
- Transport Canada Fuel Storage Tanks 1970-May 2003
Provincial Government Source Databases

- Certificates of Approval 1985-September 2002
- Ontario Regulation 347 Waste Generators Summary 1985-2004
- Ontario Regulation 347 Waste Receivers Summary 1985-2004
- Private Fuel Storage Tanks 1989-1996
- Ontario Inventory of PCB Storage Sites 1987-April 2003
- Compliance and Convictions 1989-2002
- Waste Disposal Sites – MOE CA Inventory 1970-September 2002
- Historical Approval Inventory Up to October 1990
- Occurrence Reporting Information System 1988-2002
- Pesticide Register 1988-August 2003
- Wastewater Discharger Registration Database 1990-1998
- Coal Gasification Plants 1987, 1988
- Non-Compliance Reports 1992(water only), 1994-2003
- Ministry Orders 1995-1996
- Aggregate Inventory Up to May 2005
- Abandoned Aggregate Inventory Up to September 2002
- Abandoned Mines Inventory System 1800-2005
- Record of Site Condition 1997-September 2001
- Ontario Oil and Gas Wells (1999-Oct 2004; 1800-May 2004 available for 14 select counties)
- Drill Holes 1885-2005 Mineral Occurrences 1845-October 2004
- Environmental Registry 1994-July 2003

Private Sources Databases

- Retail Fuel Storage Tanks 1989-June 2005
- Andersen's Waste Disposal Sites 1930-2004
- Chemical Register 1992,1999-June 2005
- Canadian Mine Locations 1998-2005
- Oil and Gas Wells October 2001-2005
- Automobile Wrecking & Supplies 2001-June 2005
- Anderson’s Storage Tanks 1915-1953
- ERIS Historical Searches, March 1999-2005

The database search identified several items within the Wellhead Protection Areas. There were three Certificates of Approval mapped within the search area. Two Certificates of Approval were related to municipal water supply and municipal sewage.

The water supply Certificates of Approval were for water supplied by the production wells discussed in this study. The third Certificate of Approval concerned industrial air emissions for a standby diesel generator located at the pump house for Wells 3 and 4. The Ecolog ERIS report also identifies four further Certificates of Approval but did not indicate locations. Three of the Certificates concerned municipal water supplied by the Melody Homes wells discussed in this study. The fourth Certificate of Approval concerned municipal sewage.
There were five registered Waste Generators mapped within the Wellhead Protection Area. The current presence of the businesses listed was confirmed by field assessment.

Two businesses in Grand Valley are registered to sell pesticides according to the Pesticide Register database.

Three fuel storage tanks were identified in a search of the Retail Fuel Storage Tanks database. All three tanks are located at the same property. The field assessment confirmed the location and presence of the tanks. The former gas station is currently not in operation.

Municipal Parcel Assessment Codes
Data from the Municipal Property Assessment Corporation (MPAC) was obtained from the GRCA. This data classifies parcels by land use and is generally used by Municipalities for tax purposes. For this reason it is a fairly up to date and a reliable source of information to identify land uses on a parcel basis. The data obtained was used for land use classification where other data was not available and for servicing information such as whether the parcel has water or sanitary services. The MPAC data was also useful in identifying agricultural land types.

Aerial Photo Interpretation
Historical aerial photographs were obtained from the University of Waterloo Map and Design Library and reviewed to identify land use changes and potential high-risk activities such as waste disposal sites within the Wellhead Protection Areas. Current aerial photography of the Wellhead Protection Areas was obtained from the GRCA Watershed Ortho-imagery. While the resolution of the photographs limits the detail that can be observed of the surface conditions, the following is a summary of what can be discerned:

1978 Aerial Photography: Land uses in the Wellhead Protection Area include mostly residential areas and some urban commercial areas within the Village and agricultural areas outside of the Village. One pit or quarry is located on the southeast corner of the Village, east of the Grand River. Agricultural land uses and residential housing including the Melody Homes subdivision were similar to present. No waste disposal sites or potential brownfields sites were noted in the photograph.

2000 Aerial Photography: This photograph revealed that land use within the Wellhead Protection Areas has remained largely unchanged since the 1978 photograph. The quarry in the southeast corner of the village is now three times the size it was in 1978. The agricultural lands noted in the previous aerial photograph appear unchanged.

Site Reconnaissance and Inspection
A drive-by roadside inspection of the Wellhead Protection Areas on June 26, 2006 to verify and compliment the dataset compiled during the records review portion of the assessment. The inspection consisted of a fence line/roadside documentation of the properties and their land uses included in the Wellhead Protection Area.

Well 1 and Well 2, are located approximately 100 m southeast of the Grand River in a residential area of the Village of Grand Valley. The land uses within the Wellhead Protection Area include residential, commercial, institutional, agricultural and aggregate extraction. An aggregate extraction operation is located southeast of the wells on the east side of the Grand River. A walking tour of the commercial portion of the Village of Grand Valley was conducted.
The presence or absence of commercial establishments was noted in comparison to the inspection during the previous Groundwater Management Plan was conducted.

The Melody Homes wells, Well 3 and Well 4, are located near the south boundary of the Village of Grand Valley beside the Melody Homes sub-division. The land uses within the Wellhead Protection Area include residential and agricultural.

No waste disposal sites were noted within the Grand Valley Wellhead Protection Areas during the site inspection.

In addition to identifying current significant threats, a review of planning documents was completed to identify a list of activities permitted in approved planning documents that would be significant drinking water threats.

The Town of Grand Valley Official Plan was reviewed to identify permitted land uses within the Wellhead Protection Areas. Current permitted land uses include urban residential, downtown commercial, open space, environmental protection, extractive industrial and agriculture.

Significant Drinking Water Quality Threats for the Grand Valley Well Supply

As per the Technical Rules (MOE, 2009b), the enumeration of significant threats is required for the completion of the Assessment Report. **Table 5-22** summarizes the significant threats by circumstance ID identified in the Wellhead Protection Areas in the Town of Grand Valley based on existing land uses.

<table>
<thead>
<tr>
<th>PDWT¹ #</th>
<th>Threat Subcategory</th>
<th>Number of Activities</th>
<th>Vulnerable Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Sewage System Or Sewage Works - Sanitary Sewers and related pipes</td>
<td>1</td>
<td>WHPA-B</td>
</tr>
<tr>
<td>15</td>
<td>Handling and Storage Of Fuel</td>
<td>22</td>
<td>WHPA-A, WHPA-B</td>
</tr>
<tr>
<td>16</td>
<td>Handling and Storage Of A Dense Non Aqueous Phase Liquid (DNAPL)</td>
<td>6</td>
<td>WHPA-C</td>
</tr>
<tr>
<td>Condition</td>
<td>Contaminated groundwater from a bulk fuel depot with underground storage tanks</td>
<td>N/A</td>
<td>WHPA-B</td>
</tr>
</tbody>
</table>

Table 5-22: Grand Valley Well Supply Significant Drinking Water Quality Threats

Total Number of Properties	29
Total Number of Activities	29
Total Number of Conditions	1

1: Prescribed Drinking Water Threat Number refers to the prescribed drinking water threat listed in O.Reg 287/07s.1.1.(1).

2: Where applicable, waste, sewage, and livestock threat numbers are reported by sub-threat; fuel and DNAPL by Prescribed Drinking Water Threat category.

Note: Certain types of activities on residential properties that are incidental in nature and that are significant drinking water threats are not enumerated. These threats include the application of commercial fertilizer on residential properties, the storage of organic solvents (dense non-aqueous phase liquids) on residential properties, and the storage of fuel (e.g., heating fuel tanks) on residential properties in natural gas serviced areas.

Note: Storm sewer piping is not considered to be part of a storm water management facility.
Limitations and Uncertainty for the Enumeration of Significant Drinking Water Threats for the Grand Valley Well Supply

A number of databases were used to create the threats inventory database. All databases have an error associated with them, whether it applies to the spatial or attribute information. The accuracy of the databases used depends on the source, the age of the information and the scale at which the spatial information was recorded. In this study, a field reconnaissance was completed to confirm the data and to decrease the error in the database information.

The determination of land use activities used a series of assumptions which have an uncertainty associated to them. For this enumeration, it was assumed that any possible threats associated with an activity were present and that all potential chemicals were present. The circumstances and quantity for each threat were assigned based on available knowledge such as typical storage practices, typical chemical quantities and typical waste disposal practices for that particular land use activity.

Based on the uncertainty involved in the assumptions and data used, the uncertainty for threats enumeration has been classified as high, but this level of uncertainty is expected in desk top study. With regards to the location of the threats, however, there is low uncertainty as most locations were field verified. In this study a number of databases were used to create the significant threats. All databases have an error associated with them, whether it applies to the spatial or attribute information. The accuracy of the databases used depends on the source, the age of the information and the scale at which the spatial information was recorded. In this study, to decrease some of the error in the database information a field reconnaissance was completed to confirm the data when possible.

5.3 Township of East Garafraxa

5.3.1 Marsville Well Supply

The Township of East Garafraxa is located within the Grand River watershed and is part of Dufferin County (Map 5-21). The community of Marsville is located in the centre of the Township along County Road 3 at its intersection with 13th Line. The assessment of drinking water quality within the Township was completed by R.J. Burnside in June 2010.

The Marsville Water Supply System consists of two municipal groundwater supply wells (PW1 and PW2) located at the northeast end of Grand Crescent in a public park and provides water for the Thunderbird Estates Subdivision located within the Hamlet of Marsville. The system distributes to 33 homes servicing approximately 130 people.

PW1 is the main supply well and PW2 is an alternate standby well. PW1 was drilled in 1971 and is 150 mm in diameter. The well is completed as an open hole in bedrock from 61.3 m to 91.4 m. Based on information from a well inspection completed by Well Initiatives Limited in 2009, the stand-by well PW2 is a 200 mm diameter well with an open hole bedrock interval from 75 m to 103 m.

The aquifer from which the wells obtain water is the dolostone bedrock of the Guelph and Gasport Formations. Overlying the bedrock are about 62 m of Orangeville Moraine deposits consisting of silty to clayey till. The wells draw water from the upper weathered and middle competent portion of the bedrock aquifer (Burnside, 2000).

The Marsville Water Supply system is operated under to Permit to Take Water No. 01-P-2251. According to the permit, PW1 is permitted to pump 364 L/min with a maximum daily rate of
182 m3/day. Water is currently taken from PW1 at a rate of 173 L/min. PW2 is not included in the permit and a permit amendment will be required if the Township intends to bring PW2 online.

Table 5-23, Table 5-24 and Table 5-25 provide summaries of the municipal supply wells, the system information and the average monthly and annual water taking.

Table 5-23: Municipal Production Wells in the Marsville Well Supply

<table>
<thead>
<tr>
<th>Well</th>
<th>Depth (m)</th>
<th>Open Interval</th>
<th>PTTW Number</th>
<th>Permitted Pumping Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>PW1</td>
<td>91.4</td>
<td>61.3 m to 91.4 m</td>
<td>01-P-2251</td>
<td>364 L/min</td>
</tr>
<tr>
<td>PW2</td>
<td>103</td>
<td>75 m to 103 m</td>
<td>No permit</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 5-24: Drinking Water System Information for the Marsville Well Supply

<table>
<thead>
<tr>
<th>DWS Number</th>
<th>DWS Name</th>
<th>Operating Authority</th>
<th>GW or SW</th>
<th>System Classification1</th>
<th>Number of Users served2</th>
</tr>
</thead>
<tbody>
<tr>
<td>210002183</td>
<td>Marsville Well Supply</td>
<td>Dufferin Water Co. Ltd.</td>
<td>GW</td>
<td>Small Municipal Drinking Water System</td>
<td>130</td>
</tr>
</tbody>
</table>

1 as defined by O. Reg. 170/03 (Drinking Water Systems) made under the Safe Drinking Water Act, 2002.
2 Dufferin Water Co. Ltd 2009 Marsville Summary Report (2010b)

Table 5-25: Annual and Monthly Average Pumping Rates for Marsville Well Supply

<table>
<thead>
<tr>
<th>Well or Intake</th>
<th>Annual Avg. Taking1 (m3/d)</th>
<th>Monthly Average Taking1 (m3/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jan</td>
<td>Feb</td>
</tr>
<tr>
<td>PW1</td>
<td>22.9</td>
<td>21.5</td>
</tr>
</tbody>
</table>

1 source: Dufferin Water Co. Ltd 2009 annual summary report

5.3.2 Vulnerability Analysis

Delineation of Wellhead Protection Areas

Wellhead Protection Areas (WHPAs) associated with the municipal water supply represents the areas within the aquifer that contribute groundwater to the well over a specific time period. Four Wellhead Protection Areas are specified, one a proximity zone and the others time-related capture zones:

- **Zone A** 100m radius from wellhead
- **Zone B** 2-year Time of Travel (TOT) capture zone
- **Zone C** 5-year TOT capture zone
- **Zone D** 25-year TOT capture zone

Modelling Approach for the Marsville Well Supply

Wellhead Protection Areas (WHPA) for the Marsville water supply wells were delineated as part of a study completed by Golder in 2010 using a FEFLOW groundwater model called the “Grand Valley, Waldemar, and Marsville GRCA Cut-Out Model”. This model was based on the regional...
scale GRCA model constructed by Waterloo Hydrogeologic (WHI) in 2005 for the Grand River watershed. The “Cut-Out” was improved upon by Golder and refined around the capture zones within Grand Valley, Waldemar and Marsville. The model was constructed and calibrated with available hydrogeological data and hydrogeological mapping products (Golder, 2010b). Porosity used in the model was assigned at 0.2 for all overburden units and 0.05 for all bedrock units (Golder, 2010b).

The pumping rates used were selected based on historic and estimated future pumping rates. Since the pumping rates are not expected to increase over the next 25 years due to a lack of population growth or predicted increased demand, forecast pumping rates used for the capture zone delineation were based on historical average pumping rates (Golder, 2010b). The pumping rates used in developing the capture zones were based on a forecast of anticipated future groundwater use and are provided in Table 5-26.

<table>
<thead>
<tr>
<th>Table 5-26: Pumping Rates Used for the Marsville Well Supply Wellhead Protection Areas Delineation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Wells</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>PW 1</td>
</tr>
<tr>
<td>PW 2</td>
</tr>
</tbody>
</table>

*Average daily pumping rate in 2008 (DWCo. Ltd, 2009)
Map 5-21: County of Dufferin Water Supply Serviced Areas in the Grand River Watershed
Marsville PW2 is an alternate to PW1 and is not included in the current PTTW, however for the Wellhead Protection Area delineation it was assumed that PW1 and PW2 were operating simultaneously and at the same rate. This rationale has resulted in a more conservative capture zone with respect to the total water taking applied at the Marsville pumping wells (Golder, 2010b).

To develop Time of Travel (TOT) capture zones groundwater particles were released at the pumping wells in the model and tracked backwards towards their source of origin (recharge). At each well location, particles were released in all hydrostratigraphic units “open” to the wellbore. The time-related pathlines that are subsequently generated by the model from this analysis are then overlain and a single time of travel capture zone drawn around the “family” of pathlines generated at each well.

To account for uncertainty in the model a “shape factor” was applied to effectively increase the spatial coverage of each of the time of travel capture zones. The width and length of the capture zone was increased by 20 percent to account for some uncertainty in the hydraulic characteristics of the aquifer system and the orientation of the capture zone was adjusted by 5 degrees (plus and minus) to account for uncertainty in the regional groundwater flow direction.

In delineating the time of travel capture zones at the Marsville wells, it was noted that the pathlines became essentially vertical prior to the 2 year time of travel. Effectively this means that the capture zones beyond the 2 year time of travel become thin slivers, as only the horizontal component of the pathlines is projected to surface and each zone must exclude the previous zone. Therefore, it was not possible to delineate traditional 2 year (WHPA-B), 5 year (WHPA-C) and 25 year (WHPA-D) zones for these wells. The Wellhead Protection Area for the Marsville wells was therefore delineated to consist of the 100 m exclusion zone (WHPA-A) and the 2 year capture zone (WHPA-B).

Marsville Wellhead Protection Areas

The location and orientation of the Wellhead Protection Area for the Marsville Well (PW1) is shown in Map 5-22. The Marsville capture zone extends north-east and receives recharge water from the elevated areas of the Orangeville Moraine near the watershed divide between the Grand River and Credit River systems. The steady-state zone extends approximately 2.4 km from the well. The total Wellhead Protection Area covers an area of 94 ha.

Delineation of WHPA-E and WHPA-F for the Marsville Well Supply

The Technical Rules (MOE, 2009) requires that all wells that are identified as GUDI delineate an additional protection zone that is representative of its surface water vulnerability, known as a WHPA-E. GUDI (groundwater under the direct influence of surface water) wells are identified in accordance with subsection 2 (2) of O. Reg. 170/03 (Drinking Water Systems) of the Safe Drinking Water Act, 2002.

As part of the Engineer’s Report on Marsville Water Supply System (Burnside, 2000), PW1 was identified as not being impacted by surface water. The well is located in a confined aquifer at a depth of 91 m below surface. There were no microbiological Issues identified to suggest impacts from surface water.

Since the wells in this study have not been identified as GUDI, the delineation of a WHPA-E was not required. The Technical Rules also require that a WHPA-F be delineated for a well when the wells Wellhead Protection Area contains a WHPA-E and a drinking water issue is
identified that originates outside of the areas WHPA-A through WHPA-E. Since a WHPA-E was not required for any of the wells, the delineation of a WHPA-F was also not required.
Map 5-22: Marsville Well Supply Wellhead Protection Area
Peer Review
A peer review of the report Vulnerability Analysis, Issues Evaluation and Threats Assessment, Township of East Garafraxa (Burnside, 2010a) was completed by Brian Luinstra of Luinstra Earth Sciences. The overall impressions of the report by the peer review are as follows:

“In the Peer Reviewer’s professional opinion, the overall results appear reasonable and are consistent with the requirements outlined in the Ontario Ministry of Environment Technical Rules for completion of the Assessment Report under the Clean Water Act, 2006. The overall approach to developing vulnerability scores, evaluating Issues and assessing threats are consistent with the Technical Rules.”

Responses to the peer review comments were incorporated into the final Report. The responses to the peer review comments enhanced the overall defensibility of the report but did not impact the outcome of the Wellhead Protection Areas or vulnerability scoring.

Vulnerability Scoring in Wellhead Protection Areas
The completion of aquifer vulnerability mapping is outlined under Part VII, subsection VII.3 of the Technical Rules (MOE, 2009b). Mapping for this study was completed in three stages: i) development of aquifer vulnerability mapping ii) update of vulnerability due to transport pathways and iii) assignment of vulnerability scores.

Aquifer vulnerability mapping was completed within most of the GRCA watershed using the Surface to Aquifer Advection Time (SAAT) approach. The GRCA retained Earthfx to complete the vulnerability mapping using the SAAT method for the entire Grand River watershed (Earthfx, 2008). The SAAT approach estimates the average time required by a water particle to travel from a point at the ground surface to the aquifer in question. The SAAT is approximated by using the vertical component of the advective velocity integrated over the vertical distance and the average porosity. The travel times generated are categorized into groups being <5 years, 5 to 25 years and >25 years.

Calculation of the SAAT, as conducted by Earthfx, was based on the use of empirical formulae provided by the MOE. These formulae provide methods for the computation of two separate components of the SAAT, the unsaturated zone advection time (UZAT) and the water table to aquifer advection time (WAAT). UZAT was computed based on values assumed for depth to water table, mobile water content and infiltration rate. For the study a depth to water map was generated using an interpolated water table map and the elevation of the land surface. Mobile water content was approximated based on the specific yield of each soil type and infiltration was approximated using a GAWSER recharge model in which infiltration was assumed to be equal to the recharge rate. In areas where several layers of varying materials were present the calculations were done for each layer and then summed over the entire unsaturated portion of the sub-surface.

Where required, the WAAT component of the SAAT was also computed. It is noted by Earthfx that the WAAT was only computed in two instances; the first where the target aquifer was known to be confined and the second where no aquifer material was recognised. The factors included in the computation of the WAAT were aquifer porosity, thickness of the geologic layer, vertical hydraulic conductivity and the difference between the head in the confined aquifer and the water table. Hydraulic conductivities were estimated based on the geologic materials listed in the boreholes logs. Vertical hydraulic gradients were estimated by subtracting the interpolated potentiometric surface from the interpolated water table. The thickness of each layer above the
target aquifer and the location of the top of the target aquifer were determined from the borehole logs. Details of the procedures used for the completion of the SAAT analysis are included in the report *Aquifer Vulnerability Mapping for Norfolk, Brant Counties and Catfish Creek and Kettle Creek Watershed* (Earthfx, 2008).

The regional mapping produced by the Earthfx report was reviewed on a local scale in the vicinity of the water supply wells by Golder, Burnside and the GRCA. The vulnerability mapping was refined by Golder based on the following considerations: the locations of bedrock outcrops, surficial geology, overburden thickness, SAAT point values and hydrogeological interpretations. There were no adjustments made to the Marsville SAAT ratings (Burnside, 2010a).

The SAAT travel times were grouped based on guidance provided by the MOE to create ratings which were then used to construct an aquifer vulnerability map of the study area. Time of travel values less than 5 years are rated as High Vulnerability. Values between 5 and 25 years are Medium vulnerability. Any value greater than 25 years is classified as having a Low Vulnerability. The various vulnerability ratings based on the travel times is shown in Table 5-27. A map showing the unadjusted intrinsic vulnerability is shown on Map 5-23.

<table>
<thead>
<tr>
<th>Time of Travel (years)</th>
<th>Vulnerability Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td><5</td>
<td>High</td>
</tr>
<tr>
<td>5 to 25</td>
<td>Medium</td>
</tr>
<tr>
<td>>25</td>
<td>Low</td>
</tr>
</tbody>
</table>

As described in the Technical Rules (MOE, 2009b), a vulnerability score is assigned to each vulnerable area according to the groundwater’s susceptibility to becoming contaminated and that contamination reaching a well. Within WHPAs the vulnerability score is determined based on overlaying the SAAT aquifer vulnerability classification (high, medium, low) with the defined Wellhead Protection Areas.

The vulnerability scoring for the current study was completed in accordance with Rule 82 of the Technical Rules. Vulnerability scores range from 10 for areas with the highest vulnerability to 2 for areas with low vulnerability. Scores were assigned as per Table 2(a) in Part VII of the Technical Rules (MOE, 2009b). A summary of the process used to define vulnerability scores is outlined in Table 5-28.

<table>
<thead>
<tr>
<th>Time of Travel Zone (WHPA)</th>
<th>SAAT Times</th>
<th>0 to 5 years (High)</th>
<th>5 to 25 years (Medium)</th>
<th>> 25 years (Low)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHPA A (100 m)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>WHPA B (2 yr TOT)</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>WHPA C (5 yr TOT)</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>WHPA D (25 yr TOT)</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Vulnerability Scoring for the Marsville Wellhead Protection Areas

Map 5-24 shows the vulnerability scores assigned to the Marsville Wellhead Protection Areas using the SAAT vulnerability mapping. The mapping illustrates that the entire study area is rated as low vulnerability. This low vulnerability is of the fine-grained till overburden that is extensively...
distributed throughout the area, providing protection for the aquifer from contaminants and also
due to the thickness of the overburden cover over the bedrock aquifer.

For this study the delineated zone was scored as a 2 year time of travel zone since flow
becomes vertical before a 2 year time of travel was established. The Wellhead Protection Area
has a score of 6 since the vulnerability is low while the 100 m radius zone around the supply
wells is scored as 10.

Identification of Transport Pathways and Vulnerability Adjustment

Rules 39 to 41 of the Technical Rules (MOE, 2009b) allow for an increase in vulnerability rating
of an aquifer due to the presence of transport pathways that may increase the vulnerability of
the aquifer by providing a conduit for contaminants to bypass the natural protection of the
aquifer. The presence of the transport pathways should be accounted for in the vulnerability
assessment and these pathways may include private water wells, unused water wells,
abandoned water wells, construction of underground services, subsurface excavations, pits and
quarries.

Transport Pathways in the Marsville Wellhead Protection Areas

The features discussed below were considered as transport pathways within the context of the
current study.

Water Wells

A review of water well records from the MOE water well database and a field survey were
conducted to identify wells within the Wellhead Protection Areas. The wells were then evaluated
and ranked based on their risk to the supply aquifer. The risk evaluation process included an
analysis of the age of the well and its likely condition and where possible a visual inspection of
the well. The risk evaluation process as conducted for this study. The survey resulted in the
identification of 12 water wells within the Wellhead Protection Areas and classified 7 of the wells
as high risk wells.

Residential Septic Systems

In areas where no municipal sewerage systems exist, residences are assumed to be connected
to individual septic systems. Septic systems are considered transport pathways as they can
provide a conduit for contaminants to travel through the ground to the water table. Septic
systems are generally built in the upper few metres of the sub-surface and consist of a tank and
drainage tiles from which the sewage discharge infiltrates into the ground. In the case of thin
confining layers or in unconfined aquifer conditions, these shallow penetrating systems may
present a significant conduit for contaminants to the aquifer in question. Septic systems are
assumed to be used by all residences in the study area as there is no wastewater servicing. The
municipal aquifer for the Marsville water supply is a confined aquifer that is overlain by over 60
m of fine grained sediments. In this study individual septic systems are not considered to
constitute a transport pathway due to their relatively shallow depth of penetration.

Tile Drains

Tile drains are common in agricultural areas where fine-grained soils are known to occur. Tile
drains tend to be located within the upper 1 m of the soil. A tile drain known as Brower Drainage
Works is located in a field north of the supply wells and discharges within the Wellhead
Protection Area at 13th Line. Since the aquifer used by the municipal supply wells is generally
protected by over 60 m of fine grained sediments (an upper aquitard), the risk for transport
pathways to be created due to tile drains is low.
Utilities
Utilities that are constructed in the sub-surface are potential transport pathways as the disturbed soil surrounding them can provide a pathway for contaminants to enter into the aquifer below. Utilities that may act as transport pathways include storm-water trunk sewers and sanitary infrastructure. The depth of excavation for the construction of utilities will determine the risk that the wells pose on the municipal supply aquifer. There is no infrastructure within the Wellhead Protection Areas that may act as transport pathways. Since the aquifers used by the municipal supply wells are generally protected by an upper aquitard, the risk for transport pathways to be created due to utilities is low.

Aggregate Operations
Aggregate operations are defined as activities that involve the extraction of material from the surface and in the current study include both pits and quarries. Pits and quarries present a transport pathway as their creation serves to remove a potential layer or layers of protection from the regional aquifer. In some cases, these excavations may extend to below the groundwater table in which case the pit or quarry is a direct conduit to the aquifer that the municipal source may be a part of.

As part of the current study aggregate operations have been mapped based on existing databases and the review of aerial photography and satellite imagery along with a windshield survey of the Wellhead Protection Areas. There were no aggregate operations located within the Wellhead Protection Areas.
Map 5-23 Marsville Well Supply Unadjusted Intrinsic Vulnerability
Map 5-24: Marsville Well Supply Wellhead Protection Area Final Vulnerability

Map created: 23-Jul-2010
Adjusted Vulnerability to Account for Transport Pathways
The increase in vulnerability is generally limited to one rank (low to medium or medium to high) except in extreme cases where the constructed pathway is considered to increase the vulnerability of the aquifer from low to high. These cases may occur at pits or quarries that completely breach any low permeability layers overlying a deeper aquifer.

Adjusted Vulnerability Scoring for the Marsville Wellhead Protection Areas
Within the current study, to account for the presence of high risk wells as potential transport pathways, increases in vulnerability were applied in areas with a high density of high risk wells. For this evaluation a visual survey of high risk well locations was undertaken and where there was a significant concentration of well points the update was made.

The water well survey rated 7 out of 12 water wells as high risk wells. The high risk wells are distributed within the Wellhead Protection Area along County Road 3. There is a low density of wells identified within the Wellhead Protection Area and they are located outside of the serviced area of Marsville and are likely in use. As a result, the vulnerability was not increased due to transport pathways and the final vulnerability score is shown on Map 5-24.

Uncertainty in the Wellhead Protection Area Delineation and Vulnerability Scoring for the Marsville Well Supply
The Technical Rules (MOE, 2009b) require an assessment of uncertainty as part of the vulnerability assessment. The uncertainty assessment seeks to provide a qualitative summary of data and analysis reliability as performed during the study. Uncertainty associated with a vulnerability assessment can be attributed to a number of factors including:

- Density of input data;
- Quality and reliability of data; and
- Assumptions made when reducing or synthesizing data.

The delineation of the Wellhead Protection Areas was completed through the use of a FEFLOW groundwater model. The model was completed based on a number of simplifying assumptions that incorporate some level of uncertainty that is dependent on the nature, spatial distribution and density of available data.

The groundwater model was calibrated to represent steady state conditions in the aquifer using static water levels from 1061 points. The NRMS error for the calibration is reported as being 6.1% which is considered to be within the acceptable limits of less than 10% for numerical models. The model calibration results were compared to reported pumping tests at the wells and showed a reasonable fit to the observed groundwater conditions recorded in the tests. Stream flow data was also used for calibration. Through the calibration process it was found that the hydraulic conductivities of the geological units, simulated flow pattern within the bedrock aquifer and modeled baseflows are in good agreement with site specific information (Golder, 2010b).

Uncertainties within the model are associated with limitations in the availability of subsurface information and can be related to projected variability in the aquifer properties (e.g. hydraulic conductivity; porosity) or uncertainties with the conceptual model (e.g. groundwater-surface water interactions; location of flow boundaries; recharge rates; continuity in aquitards; direction of regional groundwater flow). To account for some of these uncertainties Golder has applied a
factor of safety to the Wellhead Protection Areas. The factor of safety has been applied to two
components of the Wellhead Protection Areas; the width and length of the capture zones were
increased by 20% to account for uncertainty in the hydraulic characteristics of the aquifer
system and the orientation of the capture zone was adjusted by 5 degrees (plus and minus)
along its centre line to account for some uncertainty in the regional flow direction by increasing
the width of the capture zones at increasing distances from the pumping well. This reflects the
concept that the available data is typically concentrated around the pumping well and that the
uncertainty in the hydrogeological understanding decreases at increasing distances from the
supply wells (Golder, 2010b).

Based on known variations in hydraulic properties, the factor of safety approach is not
considered to adequately address the issue of uncertainty. It is known that slight variations of
aquifer properties may impact the shape and orientation of the capture zones. The safety factor
while attempting to cover some of this likely variation does not give an indication of the likely
impact of variations in actual model properties as there is no correlation between the factor of
safety and the model parameters.

Although the calibration results were good, the lack of information on the impact of variations in
model parameters on the resulting capture zones suggests that there has been inadequate work
completed for the full evaluation of uncertainty.

The Vulnerability assessment was completed by Earthfx on behalf of the GRCA in 2008 and
was based on the Surface to Aquifer Advection Time (SAAT). The SAAT calculation was based
on a number of empirical formulae provided in MOE’s Draft Guidance Modules (October 2006)
that have not been incorporated into the Technical Rules (MOE, 2009b). Detailed descriptions
of the methodology and associated assumptions for these calculations are included in the report
Aquifer Vulnerability mapping for Norfolk, Brant Counties, Catfish Creek and Kettle Creek
watershed (Earthfx, 2008).

The calculation of SAAT is made up of two components; the unsaturated zone advection time
(UZAT) and the water table to aquifer advection time (WAAT). In the Earthfx study both
components were computed based on simplifying assumptions included in MOE provided
formulae. It was noted that the UZAT was computed based on estimates for groundwater
recharge derived from a GAWSER model. Also values for specific yield of soils were obtained
from existing literature. The results of the UZAT analysis showed a high degree of variance
which may be attributed to variance in the input GAWSER model. The results of the analysis
indicate that there is a 95.5 % certainty that the UZAT time calculated is within +/-42 years of
the actual time at any well. This indicates that the variability of the UZAT value (margin of error)
is greater than the divisions of the vulnerability range i.e. the vulnerability could vary across the
entire range of classifications from low to medium or high based on its margin of error. The
potential for this high variation indicates that the uncertainty related to this component is high.

UZAT was computed at various water well points across the study area. There was
considerable effort made within the study to improve the quality of the spatial and lithologic data
provided by each data point. In this regard only wells with a location accuracy of less than 100
m were used as part of the study. It can be interpreted that the computations performed
represented values that were correct spatially across the study area.

The second component of the SAAT vulnerability, WAAT, was computed based on a formula
provided by the MOE and was applied in areas where the target aquifer was known to be
confined or where no aquifer material was recognized. The calculation assumes that flow within
this zone can be approximated by the Darcy law for groundwater flow. The results of a statistical
analysis indicate a high variance in the computed values which points to a high variance and high degree of uncertainty in the underlying data. The computation is known to be dependent on estimates of hydraulic properties, and interpolation of potentiometric surfaces which are based on sparse and unreliable data. The resulting product can be regarded as being an amalgamation of all the primary data uncertainties. Based on the uncertainty associated with the input data it is concluded that the WAAT calculation can be regarded as having a high uncertainty.

As well, the SAAT is derived by combining the previously discussed components of UZAT and WAAT. It is noted that the UZAT was computed using a GAWSER model to estimate recharge. The GAWSER model is known to be built on certain simplifying assumptions that have not been expounded in the background report from Earthfx. In light of this no level of uncertainty can be attached to the results of this model. Using the results of the UZAT and WAAT calculations as outlined in the Earthfx report it is concluded that the level of uncertainty associated with the computation of SAAT is high. While the corrections applied to well locations resulted in spatially correct analyses, the underlying uncertainty in the computations themselves results in an overall ranking of high uncertainty for the process.

The Earthfx team performed a comparative analysis of vulnerability methods using Intrinsic Susceptibility Index (ISI) to compare with the values for SAAT. It was indicated that the SAAT ranking compared favourably to the ISI in the high vulnerability areas with more significant deviations in the medium and low ranked areas. The statistical analysis performed on the ISI however indicated that there was also a high uncertainty in these values.

Given the poor data distribution of wells used for the SAAT analysis within the Wellhead Protection Area and the noted variability of surficial geology in the study area, there is low certainty in the SAAT vulnerability mapping.

Managed Lands within the Marsville Wellhead Protection Area

Managed lands are lands that may receive agricultural source material (ASM), non-agricultural source material (NASM) or commercial fertilizer and can be divided into 2 categories of agricultural managed lands (AML) and non-agricultural managed lands. Agricultural managed lands include cropland, fallow and improved pasture that may receive ASM. Non-agricultural managed lands may include golf courses, sports fields, residential lawns and other built-up grassed areas or turf that may have commercial fertilizers applied.

Calculation of the percentage of managed lands was done in accordance with Part II, Rule 16(9) of the Technical Rules (MOE, 2009b). Similar to the calculation of impervious surfaces, mapping the percentage of managed lands area is not required where the vulnerability score for an area is less than the vulnerability score necessary for the activity to be considered a significant threat. Therefore, the percentage of managed lands was only calculated where the vulnerability score in each Wellhead Protection Area was 6 or greater. This criterion was used to determine the need to calculate managed lands surrounding the wells in Marsville in East-Garafraxa Township (Table 5-29).

<table>
<thead>
<tr>
<th>Township</th>
<th>Location</th>
<th>Well</th>
<th>WHPA-A</th>
<th>WHPA-B</th>
<th>WHPA-C</th>
<th>WHPA-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>East-Garafraxa</td>
<td>Marsville</td>
<td>Well 1</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 5-29: Marsville Wellhead Protection Areas with Vulnerability Scores of 6 or Higher
Methodology for Calculating Managed Land Percentage

Each Wellhead Protection Area zone that required assessment for managed lands was mapped and using ArcGIS, was selected. The MPAC property layer with the associated farm code data table was overlaid over the WHPAs and all the properties that fell entirely or partially within the WHPA were selected for assessment. A union of these two layers was completed to determine the area of each parcel that only fell within the Wellhead Protection Area.

The GIS layers for wooded areas, wetlands (GRCA) and drainage (polygons determining spatial extent, not just linear location) were used to determine the extent of these land uses and were excluded from the calculation of managed lands.

Non-agricultural managed lands (NAML) were determined predominantly by using MPAC data, and this was supplemented by air photo interpretation using 2006 orthoimagery. Certain areas such as single residential unit parcels were analyzed for NAML area through air photo interpretation.

The percentage of NAML for residential parcels was between 60-65% for Grand Valley, 80% for Waldemar, and 70% for Marsville. Areas that had no managed lands included parcels with completely impervious cover, natural areas of scrubland, or the like. Using attributes as described by the MPAC category and air photo interpretation, other areas were assessed to determine the percentage of NAML within the parcels in the Wellhead Protection Areas in the same method. These percentages of NAML were multiplied by the area to get the amount of NAML in each parcel. The sum of all the NAML areas for the parcels within the Wellhead Protection Area was divided by the total area of the Wellhead Protection Area to get the percentage of NAML.

Farm codes were supplied in a separate table that was joined to the MPAC parcels to determine which parcels had the potential for application of ASM. Non-farm parcels were not coded ("Not Defined" in the Farm Operation code) and were assumed to not be agricultural in nature, unless the air photo was interpreted otherwise. AML includes cropland, improved pasture and fallow. The land area of these agricultural lands was summed then calculated as a percentage of the Wellhead Protection Area.

The area of NAML and the area of AML were then summed together and subsequently divided by the total area of the Wellhead Protection Area to get the percentage of managed lands.

The results of the calculations for managed lands Table 5-30 and Map 5-25. The coding of N/A indicates that the vulnerability score in this area is 4 or less, and this area has not been assessed.

<table>
<thead>
<tr>
<th>Township</th>
<th>Location</th>
<th>Well</th>
<th>WHPA-A</th>
<th>WHPA-B</th>
<th>WHPA-C</th>
<th>WHPA-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>East-Garafraxa</td>
<td>Marsville</td>
<td>Well 1</td>
<td>89.41%</td>
<td>92.22%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Livestock Density within the Marsville Wellhead Protection Area

Livestock density is used as a surrogate measure of the potential for generating, storing and land applying agricultural source material as a source of nutrients vulnerable areas. The livestock density is expressed as nutrient units per acre (NU/Acre) and is calculated based on the number of animals housed, or pastured on a farm unit that generates enough manure to fertilize an area of land.

Livestock density is combined with the results of the computations for percentage agricultural managed land for the purposes of determining the circumstances related to the application of nutrients and the associated threats as defined by the MOE’s Table of Drinking Water Threats.

Methodology for Calculating Livestock Density

As stated previously, the farm operation code table joined to the MPAC layer was used to determine what type of farming took place in each parcel. Often these categories were helpful for scoping for livestock housing, yet some were too generic (such as ‘mixed farming’) or erroneous and air photo interpretation was needed to determine what structures had the

The first screening of the air photo was to determine whether barns were present on a parcel that fell either partially or entirely within each Wellhead Protection Area. The parcels that were used were the same ones cut for the Managed Lands Methodology above. The barns on farms with codes not related to livestock (such as ‘cash crops – feed and seed’) were looked at but often quickly ruled out as livestock barns due to the farm code description.

Barns on farm parcels with codes related to livestock were looked at more carefully to determine what type of livestock could be housed and in which structures. Air photo interpretation with some knowledge of key identifying features of housing structures and land use practices allowed some confidence in selecting the correct structure as a livestock housing structure.

Once a livestock housing barn was selected, the type of livestock that was assumed to be housed in the barn was estimated with help from the farm code description and air photo interpretation. A polygon was drawn to cover the footprint of the structure to represent the area of housing space for the livestock. The area of the barn was multiplied by the conversion factor for that livestock type, relating the area of the barn (in square metres) per Nutrient Unit, as supplied by OMAFRA in the Technical Memorandum issued by GRCA for Lake Erie Region Technical Studies (September 23, 2009) (GRCA, 2009a). This amount of nutrients is assumed to be applied to all the AML area on that farm unit evenly.

To verify the air photo interpretation, drive-by site visits were done to capture a photograph of the barn from the road-side. The ability to see the barn from both the road-side and the air photo greatly increases the success of correctly estimating the livestock type. Also, seeing the barns from the roadside can help in determining housing versus non-housing structures on the farm property. Additional barns could also be discovered that were missed in the air photo interpretation during site visits. Some barns are possibly not visible from the road-side, being sheltered by trees or other obstacles; however signage, barnyards, manure piles or grazing livestock can be visible to identify the operation type. Any questionable air photo interpretations were recommended to be visited, and photos be taken if an expert is available for consultation afterwards.

Once all the livestock barns were found and the NUs calculated, the total NU applied to only the area within the Wellhead Protection Area is needed. Using area weighting, the livestock density (in NU/acre) of each farm parcel was applied to only the area within the Wellhead Protection
Area and summed with all the other NU calculations on farm parcels in the Wellhead Protection Area.

The total NU generated by all the barns is divided by the total AML in the Wellhead Protection Area, regardless of the type of farm (livestock or non-livestock). The livestock density in the Wellhead Protection Area is thus the sum of all NU applied within the WHPA divided by the total AML area (in acres).

The results of the calculations for livestock density are provided in Table 5-31 and Map 5-26.

<table>
<thead>
<tr>
<th>Township</th>
<th>Location</th>
<th>Well</th>
<th>WHPA-A</th>
<th>WHPA-B</th>
<th>WHPA-C</th>
<th>WHPA-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>East-Garafraxa</td>
<td>Marsville</td>
<td>Well 1</td>
<td>0</td>
<td>0.62</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

In Table 5-31, the coding of 0 indicates that there were no agricultural livestock barns to contribute nutrients and therefore the value for livestock density is 0. The coding of N/A indicates that the vulnerability score in this area is 4 or less, and this area has not been assessed.

Assumptions While Assigning Non-Agricultural Managed Lands

Some default values were used for estimating NAML based on the air photo interpretations and for ease of calculating. Roads generally had right-of-ways that were about 50% of the parcel size while the rest was the actual roadway, so most of these parcels were given NAML percentage of 50%. Parks or other open green-space that were interpreted as turf or grass were all assumed to have commercial fertilizers applied and thus defined as managed lands.

Percent Impervious Surface Area in Wellhead Protection Areas

Road salt used during winter road maintenance is regarded as a threat. Generally road salts are applied depending on the amount of traffic a road receives and weather conditions.

Impervious surfaces are defined in the Technical Rules (MOE, 2009b) as areas that receive road salt application and include roads and parking lots. The areas were determined using road mapping from the National Road Network (Natural Resources Canada) and satellite air photography to identify large parking lots and paved areas. Using a 1 km x 1 km grid centered over each vulnerability area, the percentage of impermeable surfaces within each square kilometre was calculated. The percentage of total impervious surface areas within each square kilometre of the Marsville Wellhead Protection Area is shown in Map 5-27. The percentage of impervious surfaces is an indicator for the potential for impacts due to road salts. In areas with high levels of impervious surfaces (roads) there is an increased likelihood that road salts would be applied.
Map 5-25: Marsville Well Supply Percent Managed Lands
Map 5-26: Marsville Well Supply Livestock Density

Livestock Density (ASM)
WHPA - Nutrient Unit per Acre
- < 0.5 NU/acre
- 0.5 - 1.0 NU/acre
- > 1.0 NU/acre
Map 5-27: Marsville Well Supply Percent Impervious Surfaces
5.3.3 Drinking Water Threats Assessment

The Ontario Clean Water Act, 2006 defines a Drinking Water Threat as “an activity or condition that adversely affects or has the potential to adversely affect the quality or quantity of any water that is or may be used as a source of drinking water, and includes an activity or condition that is prescribed by the regulation as a drinking water threat.”

The Technical Rules (MOE, 2009) list five ways in which to identify a drinking water threat:

a) Through an activity prescribed by the Act as a Prescribed Drinking Water Threat;

b) Through an activity identified by the Source Water Protection Committee as an activity that may be a threat and (in the opinion of the Director) a hazard assessment confirms that the activity is a threat;

c) Through a condition that has resulted from past activities that could affect the quality of drinking water;

d) Through an activity associated with a drinking water issue; and

e) Through an activity identified through the events based approach (this approach has not been used in this Assessment Report).

Activities that Are or Would be Drinking Water Quality Threats in the Wellhead Protection Areas

Ontario Regulation 287/07, pursuant to the Clean Water Act, provides a list of Prescribed Drinking Water Threats that could constitute a threat to drinking water sources. Table 5-32 lists the activities that prescribed drinking water threats. Listed beside the prescribed drinking water threats are the typical land use activities that are associated with the threat.

In addition, there is one local threat that has been identified in the Lake Erie Source Protection Region: the transportation of oil and fuel products through a pipeline.

A spill of oil and fuel products could result in the presence of petroleum hydrocarbons or BTEX in groundwater. The conveyance of oil by way of an underground pipeline that would be designated as transmitting or distributing “liquid hydrocarbons”, including “crude oil”, “condensate”, or “liquid petroleum products”, and not including “natural gas liquids” or “liquefied petroleum gas”, within the meaning of Ontario Regulation 210/01 under the Technical Standards and Safety Act or is subject to the National Energy Board Act, was approved as a local threat. The letter of approval from the Director of the Source Protection Programs Branch and table of hazard ratings is found in Appendix D.

<table>
<thead>
<tr>
<th>Prescribed Drinking Water Threat</th>
<th>Land Use / Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontario Regulation 287/07 s.1.1.(1)</td>
<td>Landfills – Active, Closed</td>
</tr>
<tr>
<td></td>
<td>Hazardous Waste Disposal</td>
</tr>
<tr>
<td>1 The establishment, operation or maintenance of a waste disposal site within the meaning of Part V of the Environmental Protection Act.</td>
<td>Liquid Industrial Waste</td>
</tr>
</tbody>
</table>
Table 5-32: Drinking Water Threats

<table>
<thead>
<tr>
<th>Prescribed Drinking Water Threat</th>
<th>Land Use / Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontario Regulation 287/07 s.1.1.(1)</td>
<td></td>
</tr>
<tr>
<td>2 The establishment, operation or maintenance of a system that collects, stores, transmits,</td>
<td>Sewage Infrastructures</td>
</tr>
<tr>
<td>treats or disposes of sewage.</td>
<td>Septic Systems, etc.</td>
</tr>
<tr>
<td>3 The application of agricultural source material to land.</td>
<td>e.g. manure, whey, etc.</td>
</tr>
<tr>
<td>4 The storage of agricultural source material.</td>
<td>e.g. manure, whey, etc.</td>
</tr>
<tr>
<td>5 The management of agricultural source material.</td>
<td>aquaculture</td>
</tr>
<tr>
<td>6 The application of non-agricultural source material to land.</td>
<td>Organic Soil Conditioning Biosolids</td>
</tr>
<tr>
<td>7 The handling and storage of non-agricultural source material.</td>
<td>Organic Soil Conditioning Biosolids</td>
</tr>
<tr>
<td>8 The application of commercial fertilizer to land.</td>
<td>Agriculture Fertilizer</td>
</tr>
<tr>
<td>9 The handling and storage of commercial fertilizer.</td>
<td>General Fertilizer Storage</td>
</tr>
<tr>
<td>10 The application of pesticide to land.</td>
<td>Pesticides</td>
</tr>
<tr>
<td>11 The handling and storage of pesticide.</td>
<td>General Pesticide Storage</td>
</tr>
<tr>
<td>12 The application of road salt.</td>
<td>Road Salt Application</td>
</tr>
<tr>
<td>13 The handling and storage of road salt.</td>
<td>Road Salt Storage</td>
</tr>
<tr>
<td>14 The storage of snow.</td>
<td>Snow Dumps</td>
</tr>
<tr>
<td>15 The handling and storage of fuel.</td>
<td>Petroleum Hydrocarbons</td>
</tr>
<tr>
<td>16 The handling and storage of a dense non-aqueous phase liquid.</td>
<td>DNAPLs</td>
</tr>
<tr>
<td>17 The handling and storage of an organic solvent</td>
<td>Organic Solvents</td>
</tr>
<tr>
<td>18 The management of runoff that contains chemicals used in the de-icing of aircraft.</td>
<td>De-icing</td>
</tr>
<tr>
<td>19 An activity that takes water from an aquifer or a surface water body without returning the</td>
<td>Private water taking</td>
</tr>
<tr>
<td>water taken to the same aquifer or surface water body.</td>
<td></td>
</tr>
<tr>
<td>20 An activity that reduces the recharge of an aquifer.</td>
<td>Impervious Surfaces</td>
</tr>
<tr>
<td>21 The use of land as livestock grazing or pasturing land, an outdoor confinement area or a</td>
<td>Agricultural Operations</td>
</tr>
<tr>
<td>farm-animal yard.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Local Drinking Water Threat</th>
<th>Land Use / Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>The conveyance of oil by way of an underground pipeline that would be designated as</td>
<td>Oil pipeline</td>
</tr>
<tr>
<td>transmitting or distributing "liquid hydrocarbons", including "crude oil", "condensate",</td>
<td></td>
</tr>
<tr>
<td>or "liquid petroleum products", and not including "natural gas liquids" or "liquefied</td>
<td></td>
</tr>
<tr>
<td>petroleum gas", within the meaning of the Ontario Regulation 210/01 under the Technical</td>
<td></td>
</tr>
<tr>
<td>Standards and Safety Act or is subject to the National Energy Board Act.⁷</td>
<td></td>
</tr>
</tbody>
</table>

¹: As confirmed by the letter from the Director of the Source Protection Programs Branch in Appendix D.

Identification of Significant, Moderate and Low Drinking Water Quality Threats for the Marsville Well Supply

The identification of a land use activity as a significant, moderate, or low drinking water threat depends on its risk score, determined by considering the circumstances of the activity and the type and vulnerability score of any underlying protection zones, as set out in the Tables of Drinking Water Threats available through www.sourcewater.ca. Information on drinking water
threats is also accessible through the Source Water Protection Threats Tool: http://swpip.ca. For local threats, the risk score is calculated as per the Director’s Approval Letter, as shown in Appendix C. The information above can be used with the vulnerability scores shown in Map 5-24 to help the public determine where certain activities are or would be significant, moderate and low drinking water threats.

Table 5-33 provides a summary of the threat levels possible in the Marsville Well Supply for Chemical, Dense Non-Aqueous Phase Liquid (DNAPL), Pathogen, and Local Threats (Oil Pipelines). A checkmark indicates that the threat classification level is possible for the indicated threat type under the corresponding vulnerable area / vulnerable score; a blank cell indicates that it is not. The colours shown for each vulnerability score correspond to those shown in Map 5-24.

<table>
<thead>
<tr>
<th>Threat Type</th>
<th>Vulnerable Area</th>
<th>Vulnerability Score</th>
<th>Threat Classification Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Significant 80+ Moderate 60 to <80 Low >40 to <60</td>
</tr>
<tr>
<td>Chemicals</td>
<td>WHPA-A</td>
<td>10</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>WHPA-B</td>
<td>6</td>
<td>✓</td>
</tr>
<tr>
<td>Handling / Storage of DNAPLs</td>
<td>WHPA-A/B</td>
<td>Any Score</td>
<td>✓</td>
</tr>
<tr>
<td>Pathogens</td>
<td>WHPA-A</td>
<td>10</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>WHPA-B</td>
<td>6</td>
<td>✓</td>
</tr>
<tr>
<td>Local Threat (Oil Pipelines)</td>
<td>WHPA-A</td>
<td>10</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>WHPA-B</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

5.3.4 Conditions Evaluation

In addition to present land use activities, any conditions resulting from past activities are also considered drinking water threats. As described in the Technical Rules (MOE, 2009b), the following conditions are considered drinking water threats to groundwater sources if located within vulnerable areas:

- The presence of a non-aqueous phase liquid in groundwater in a HVA, SGRA or WHPA;
- The presence of a contaminant in groundwater in a HVA, SGRA or a WHPA, if the contaminant is listed in Table 2 of the Soil, Groundwater and Sediment Standards and is present at a concentration that exceeds the potable groundwater standard set out for the contaminant in the table;

Conditions Evaluation for the Marsville Well Supply

A review of available data regarding potential contamination within the WHPAs was completed. Data available included databases from the Ecolog ERIS results such as Record of Site Condition, MOE Spills Database and Occurrence Reporting Information System.

One spill was recorded in the ORIS database as potentially being in the WHPA. Table 5-34 provides a summary of the potential condition identified through the Ecolog ERIS search. This
search of available databases does not provide evidence of a condition such as water quality results or monitoring report results. The SPC may choose to investigate the occurrence to evaluate if a condition exists.

<table>
<thead>
<tr>
<th>Source Database</th>
<th>Description</th>
<th>Location</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIS</td>
<td>Spill from Transformer</td>
<td>School at County Rd 3 and Regional Road 24 (former Highway 25)</td>
<td>9 L of non-PCB transformer oil spill to ground, confirmed impact (Spill ID 176187)</td>
</tr>
</tbody>
</table>

Based on the available data there were no conditions identified in the Marsville Wellhead Protection Areas.

5.3.5 Drinking Water Quality Issues Evaluation

The objective of the Issues evaluation is to identify drinking water Issues where the existing or trending concentration of a parameter or pathogen at an intake, well or monitoring well would result in the deterioration of the quality of water for use as a source of drinking water. The parameter or pathogen must be listed in Schedule 1, 2 or 3 of the Ontario Drinking Water Quality Standards (ODWQS) or Table 4 of the Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines (Technical Rules XI.1 (114 – 117)).

Once a drinking water Issue is identified, the objective is to identify all sources and threats that may contribute to the issue within an Issue contributing area and manage these threats appropriately. If at this time the Issue Contributing Area cannot be identified or the Issue cannot be linked to threats then a work plan must be provided to assess the possible link.

If an Issue is identified for an intake, well or monitoring well, then all threats related to a particular Issue within the Issue Contributing Areas are as significant drinking water threats, regardless of the vulnerability.

Methodology for Water Quality Issues Evaluation for the Marsville Well Supply

As part of the Issues evaluation, a review of the available water quality data to assess whether any contaminants are impacting or have the potential to impact or interfere with the Marsville Water Supply System was conducted. This included the following steps:

- Collection of water quality data.
- Comparison of water quality data to the ODWQS to see if any parameters were in exceedance.
- Preparation of concentrations of parameters over time plots to evaluate if there were any increasing trends.
- Operator Interview.

Data Sources for Water Quality Issues Evaluation for the Marsville Well Supply

All available water quality data for the Marsville water supply wells was collected and reviewed. This included engineering reports and MOE Annual reports for the water supply systems.
Water quality data collected in 2000 from Marsville Well showed an exceedance of the ODWQS for iron (Burnside, 2000).

The MOE Drinking Water Systems O. Reg. 170/03, 2005 and 2008 Annual Reports for the Marsville water supply system were reviewed to identify any water quality issues.

Some elevated levels of arsenic were recorded in 2008. Arsenic was sampled at three different times during the year and levels ranged from 26 µg/L to 28 µg/L. The ODWQS standard for arsenic is 25 µg/L. An interview with the system operator, provided that the problems occurred during their routine lead sampling program. All of the samples in exceedance were taken from hydrants more than 30 years old and were not taken from in the pump house or homes. The problem is thought to be a result of the material used in the construction of the hydrants and that the problem is localized to these hydrants. Re-sampling at the hydrants resulted in acceptable results if the hydrants were flushed for longer periods of time before the sample was collected.

A review of the available microbiological data for the Marsville Water Supply wells for years 2000, 2005, 2007 and 2008 was completed. No Issues with total coliforms or E.coli were been documented.

Water Operator Interview
The operator of the Marsville system was consulted to identify any Issues that may result in the deterioration of the water quality. No current water quality issues at the Marsville Water Supply System were identified.

Water Quality Issues Evaluation for the Marsville Well Supply
The only parameter identified as a parameter of consideration is iron.

A sample collected from the Marsville well in 2001 had an iron concentration of 0.32 mg/L. This exceeds the ODWQS guideline of 0.3 mg/L. Iron is an aesthetic objective, which means that it may impair the taste, smell or colour of the water or interfere with good water quality control practices. Elevated levels of iron are typical for bedrock aquifers. Since iron is an aesthetic objective and naturally occurring it is not considered a water quality issue.

Summary of Water Quality Issues Evaluation of the Marsville Well Supply
Upon review of available current drinking water quality data, there are no Issues for the Marsville wells. Iron was identified as having elevated concentrations, however is naturally occurring, therefore, does not reflect a deterioration of water quality.

There are no water quality Issues identified under Technical Rule 114 currently interfering or anticipated to interfere with the use of the groundwater as a source of drinking water.

Limitations and Uncertainty for the Water Quality Issues Evaluation for the Marsville Well Supply
The water quality data reviewed includes data from 2000 to 2008. This is a limited time span making it difficult to identify trends, especially when not all parameters were sampled during each year. It is also noted that there is no monitoring well is designated for the water supply system.
5.3.6 Enumeration of Significant Drinking Water Threats

The Technical Rules (MOE, 2009b) require an estimation of the number of locations at which an Activity is a significant drinking water threat and the number of locations at which a Condition resulting from past activity is a significant drinking water threat.

The threats inventory was compiled using the data from various sources that were reviewed as part of this study. Following the preliminary research, field assessments were conducted to verify and complete the threats inventory process. As a conservative measure no effort to include the impact of management techniques that may be employed at any threat location was considered. It can therefore be concluded that the level of uncertainty associated with this inventory is high. It is through a re-evaluation of the prioritized threats that the level of uncertainty associated with the current results will be reduced.

Data Sources for the Activity Threats Assessment of the Marsville Well Supply

The threats inventory was compiled using the data and information sources outlined below. Following the preliminary research field assessments were completed to complete the threats inventory. All threats were recorded in a database provided by the MOE.

EcoLog Environmental Risk Information Services Ltd. (EcoLog ERIS) is a national database service, which provides specific environmental and real estate information for locations across Canada. A review of all available provincial, federal and private environmental databases was requested for the areas within a prescribed radius around the wells’ Wellhead Protection Areas. The search included the following databases:

Federal Government Source Databases

- National PCB Inventory 1988-June 2004
- National Pollutant Release Inventory 1994-2004
- Environmental Issues Inventory System 1992-2001
- Contaminated Sites on Federal Land June 2000-2005
- Environmental Effects Monitoring 1992-2004
- Fisheries & Oceans Fuel Tanks 1964-September 2003
- Indian & Northern Affairs Fuel Tanks 1950-August 2003
- National Analysis of Trends in Emergencies System (NATES) 1974-1994
- National Defense & Canadian Forces Fuel Tanks Up to May 2001
- National Defense & Canadian Forces Spills March 1999-February 2005
- National Environmental Emergencies System (NEES) 1974-2003
- Parks Canada Fuel Storage Tanks 1920-January 2005
- Transport Canada Fuel Storage Tanks 1970-May 2003

Provincial Government Source Databases

- Certificates of Approval 1985-September 2002
- Ontario Regulation 347 Waste Generators Summary 1985-2004
- Ontario Regulation 347 Waste Receivers Summary 1985-2004
- Private Fuel Storage Tanks 1989-1996
- Ontario Inventory of PCB Storage Sites 1987-April 2003
• Compliance and Convictions 1989-2002
• Waste Disposal Sites – MOE CA Inventory 1970-September 2002
• Waste Disposal Sites – MOE 1991 Historical Approval Inventory Up to October 1990
• Occurrence Reporting Information System 1988-2002
• Pesticide Register 1988-August 2003
• Wastewater Discharger Registration Database 1990-1998
• Coal Gasification Plants 1987, 1988
• Non-Compliance Reports 1992(water only), 1994-2003
• Ministry Orders 1995-1996
• Aggregate Inventory Up to May 2005
• Abandoned Aggregate Inventory Up to September 2002
• Abandoned Mines Inventory System 1800-2005
• Record of Site Condition 1997-September 2001
• Ontario Oil and Gas Wells (1999-Oct 2004; 1800-May 2004 available for 14 select counties)
• Drill Holes 1885-2005
• Mineral Occurrences 1845-October 2004
• Environmental Registry 1994-July 2003

Private Sources Databases
• Retail Fuel Storage Tanks 1989-June 2005
• Andersen's Waste Disposal Sites 1930-2004
• Scott's Manufacturing Directory 1992-2005
• Chemical Register 1992,1999-June 2005
• Canadian Mine Locations 1998-2005
• Oil and Gas Wells October 2001-2005
• Automobile Wrecking & Supplies 2001-June 2005
• Anderson’s Storage Tanks 1915-1953
• ERIS Historical Searches, March 1999-2005

The only item identified by the Ecolog ERIS search was a Certificate of Approval for the Marsville Water Supply System issued in 2002 (Ecolog ERIS, 2006).

Municipal Parcel Assessment Codes
Data from the Municipal Property Assessment Corporation (MPAC) was obtained from the GRCA. This data classifies parcels by land use and is generally used by Municipalities for tax purposes. For this reason it is a fairly up to date and a reliable source of information to identify land uses on a parcel basis. The data obtained was used for land use classification where other data was not available and for servicing information such as whether the parcel has water or sanitary services. The MPAC data was also useful in identifying agricultural land types.

Aerial Photo Interpretation
Historical aerial photographs were obtained from the University of Waterloo Map and Design Library and reviewed to identify land use changes and potential high-risk activities such as waste disposal sites within the WHPAs. Current aerial photography of the WHPAs was obtained from the GRCA Watershed Ortho-imagery. While the resolution of the photographs limits the detail that can be observed of the surface conditions, the following is a summary of what can be discerned:
1978 Aerial Photography
The land within the Marsville wellhead protection area is dominantly agricultural with some residential buildings. Some small shops, houses and institutional buildings exist along County Road 3. The Thunderbird Estates Subdivision is located west of the wells. No waste disposal sites, potential brownfields sites, gravel pits or quarries were noted in the photograph.

2000 Aerial Photography
The photographs from 2000 revealed that land use within the Marsville WHPA has remained largely unchanged since the 1978 photograph. The agricultural lands noted in the previous aerial photograph appear to remain unchanged.

Site Reconnaissance and Inspection
A drive-by roadside inspection of the WHPAs on June 26, 2006 to verify and compliment the dataset compiled during the records review portion of the assessment. The inspection consisted of a fence line/roadside documentation of the properties and their land uses included in the WHPA.

At the time of our inspection the predominant land uses included residential and agricultural activities. An elementary school was located along County Road 3. Residential homes along County Road 3 and 9th Line were noted to have wells and septic systems. Homes in the Thunderbird Estates subdivision utilize municipally supplied water and use individual in ground septic systems. Storm water ditches were located along the roads. No quarries, gravel pits or waste disposal sites were noted within the Wellhead Protection Area during the site inspection.

Significant Drinking Water Quality Threats for the Marsville Well Supply
As per the Technical Rules (MOE, 2009b), the enumeration of significant threats is required for the completion of the Assessment Report. Table 5-35 summarizes the significant threats identified in the Marsville WHPAs.
Table 5-35: Marsville Well Supply Significant Drinking Water Quality Threats

<table>
<thead>
<tr>
<th>PDWT(^1) #</th>
<th>Threat Subcategory(^2)</th>
<th>Number of Activities</th>
<th>Vulnerable Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Sewage System Or Sewage Works - Septic System</td>
<td>7</td>
<td>WHPA-A</td>
</tr>
<tr>
<td>3</td>
<td>Application Of Agricultural Source Material (ASM) To Land</td>
<td>1</td>
<td>WHPA-A</td>
</tr>
<tr>
<td>8</td>
<td>Application Of Commercial Fertilizer To Land</td>
<td>1</td>
<td>WHPA-A</td>
</tr>
<tr>
<td>10</td>
<td>Application Of Pesticide To Land</td>
<td>1</td>
<td>WHPA-A</td>
</tr>
</tbody>
</table>

Total Number of Properties: 8

Total Number of Activities: 10

1: Prescribed Drinking Water Threat Number refers to the prescribed drinking water threat listed in O.Reg 287/07s.1.1.(1).

2: Where applicable, waste, sewage, and livestock threat numbers are reported by sub-threat; fuel and DNAPL by Prescribed Drinking Water Threat category.

Note: Certain types of activities on residential properties that are incidental in nature and that are significant drinking water threats are not enumerated. These threats include the application of commercial fertilizer on residential properties, the storage of organic solvents (dense non-aqueous phase liquids) on residential properties, and the storage of fuel (e.g., heating fuel tanks) on residential properties in natural gas serviced areas.

Note: Storm sewer piping is not considered to be part of a storm water management facility.

Limitations and Uncertainty for the Enumeration of Significant Drinking Water Threats for the Marsville Well Supply

A number of databases were used to create the threats inventory database. All databases have an error associated with them, whether it applies to the spatial or attribute information. The accuracy of the databases used depends on the source, the age of the information and the scale at which the spatial information was recorded. In this study, a field reconnaissance was completed to confirm the data and to decrease the error in the database information.

The determination of land use activities used a series of assumptions which have an uncertainty associated to them. For this enumeration, it was assumed that any possible threats associated with an activity were present and that all potential chemicals were present. The circumstances and quantity for each threat were assigned based on available knowledge such as typical storage practices, typical chemical quantities and typical waste disposal practices for that particular land use activity.

Based on the uncertainty involved in the assumptions and data used, the uncertainty for threats enumeration has been classified as high, but this level of uncertainty is expected in desk top study. With regards to the location of the threats, however, there is low uncertainty as most locations were field verified.

5.4 Town of Shelburne

5.4.1 Shelburne Water Supply

The Town of Shelburne is situated at the headwaters of the Boyne River in the centre of Dufferin County and in the Nottawasaga Valley Source Protection Area. The Shelburne Water Supply System services a population of approximately 5,000 people and consists of four...
groundwater supply wells and three pump houses. Portions of WHPA-D for all four of the Shelburne wells cross into the Grand River Source Protection Area.

In 2010, a new well (PW7) was drilled and is currently being incorporated into the Town’s water supply system. PW7 is located 3 km west of the Town of Shelburne, within the boundaries of the Grand River Source Protection Area. The new well was added to address the projected increase in system demand and to secure a new municipal water supply with minimal concentrations of naturally-occurring arsenic. Naturally occurring concentrations of arsenic are currently found in the existing Town supply wells.

PW7 is a 305 mm diameter well drilled to a depth of 86.6 mbgs (meters below ground surface). As bedrock was encountered at 9.1 mbgs, the well was completed with a steel casing extending down to a depth of 47.2 mbgs, followed by 39.4 m of open hole. The well draws water from the Gasport aquifer unit, which is considered to have more desirable formation water chemistry than the shallower Guelph aquifer (EarthFX, 2015).

For further information on wells PW1, PW3, PW5 and PW6 of the Shelburne Water Supply System, please see the Assessment Report for the Nottawasaga Valley Source Protection Area.

<table>
<thead>
<tr>
<th>Well</th>
<th>Depth (m)</th>
<th>Open Interval</th>
<th>Permitted Pumping Rate (PTTW No.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PW7</td>
<td>86.5</td>
<td>47.2 m to 86.5m</td>
<td>1135 L/min</td>
</tr>
</tbody>
</table>

Table 5-37: Drinking Water System Information for the Shelburne Water Supply

<table>
<thead>
<tr>
<th>DWS Number</th>
<th>DWS Name</th>
<th>Operating Authority</th>
<th>GW or SW</th>
<th>System Classification¹</th>
<th>Number of Users served</th>
</tr>
</thead>
<tbody>
<tr>
<td>220004965</td>
<td>Shelburne Drinking Water System</td>
<td>Ontario Clean Water Agency</td>
<td>GW</td>
<td>2</td>
<td>6900</td>
</tr>
</tbody>
</table>

¹ as defined by O. Reg. 170/03 (Drinking Water Systems) made under the Safe Drinking Water Act, 2002.

5.4.2 Vulnerability Analysis

Delineation of Wellhead Protection Areas

Wellhead Protection Areas (WHPAs) associated with the municipal water supply represent the areas within the aquifer that contribute groundwater to the well over a specified time period. According to the Technical Rules (MOE, 2009b), four Wellhead Protection Areas must be identified.

The delineation of a Wellhead Protection Area for a municipal well field is based on the delineation of the time of travel capture areas for the municipal well field. The Wellhead Protection Area represents the area projected to land surface where groundwater can be captured by pumping at the municipal wells. It should be noted that the Wellhead Protection...
Areas represent time of travel within the saturated zone of the aquifer to the well and do not account for travel time from ground surface down to the water table. The pumping rates used to determine the Wellhead Protection Area are based on the allocated quantity of water.

The Wellhead Protection Areas were sub-divided into four zones as follows according to Technical Rule V.3 (47-50):

- Zone A (WHPA-A) 100 m radius from wellhead
- Zone B (WHPA-B) 2 year time of travel (TOT) capture zone
- Zone C (WHPA-C) 5 year time of travel capture zone
- Zone D (WHPA-D) 25 year time of travel capture zone

Modelling Approach for the Shelburne Water Supply

Wellhead Protection Areas for the Shelburne well PW7 were delineated as part of a study completed by EarthFX (2015). MODFLOW was employed to create a new groundwater flow model for the area surrounding Shelburne. The model was constructed and calibrated with available hydrogeological data and hydrological mapping products (EarthFX, 2015). GSFLOW was used to create an updated surface water model for the Shelburne area. Output from the surface model supplied the recharge rates to the groundwater flow model.

Pumping rates were selected based on the maximum reported takings in 2013 for the existing Shelburne municipal wells. The simulated pumping rate for Shelburne well PW7 was based on initial well capacity tested completed by Golder and Banks (2013). The pumping rates used in developing the capture zones are presented in Table 5-38. Withdrawals from five other municipal wells (three belonging to the Town of Mulmur and two in the Hamlet of Rosemount) were also simulated in the model along with nine non-municipal takings.

To develop Time of Travel (TOT) capture zones 100 virtual particles were released on each of the four sides of the model cell containing a production well. The particles were released in the layer of the model representing the Gasport Formation for well PW7. TOT zones were created by manually drawing a polygon around each well that encompasses all particle locations at the designated times (i.e., 2, 5 and 25 years). The large number of particles (400 per well) released meant that TOT zones were drawn as accurately as possible.

Table 5-38: Pumping Rates Used for the Shelburne Well Supply Wellhead Protection Areas Delineation

<table>
<thead>
<tr>
<th>Supply Wells</th>
<th>Simulated Pumping Rate</th>
<th>Actual Pumping Rate*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PW 1</td>
<td>1,030 m3 / day</td>
<td>519 m3 / day</td>
</tr>
<tr>
<td>PW 3</td>
<td>1,067 m3 / day</td>
<td>528 m3 / day</td>
</tr>
<tr>
<td>PW 5</td>
<td>982 m3/day</td>
<td>-</td>
</tr>
<tr>
<td>PW 6</td>
<td>982 m3/day</td>
<td>344 m3 / day</td>
</tr>
<tr>
<td>PW 7</td>
<td>1,635 m3/day</td>
<td>-</td>
</tr>
</tbody>
</table>

*Average daily pumping rate in 2014 (WSP Canada Inc, 2014)

Shelburne Wellhead Protection Areas

The location and orientation of the Wellhead Protection Areas for the Shelburne Well PW7 is shown in Map 5-28. The Shelburne Well PW7 Wellhead Protection Areas extend to the north east and cross the watershed divide between the Grand River and Boyne River systems.
Map 5-28: Shelburne Water Supply Wellhead Protection Area

* Nottawasaga Valley Source Protection Area Zones overlapping into the Grand River Source Protection Area are shown on this map for illustration only. Users should confirm the exact location of these zones with the Nottawasaga Valley Source Protection Area directly.
Vulnerability Scoring in Wellhead Protection Areas

According to the Technical Rules, aquifer vulnerability must be assessed by one or more of the following groundwater vulnerability assessment methods (Rule 37):

1. Intrinsic Susceptibility Index (ISI);
2. Aquifer Vulnerability Index (AVI);
3. Surface To Aquifer Advection Time (SAAT); or
4. Surface To Well Advection Time (SWAT).

The Surface to Well Advective Time (SWAT) method was used to delineate areas of low, medium and high vulnerability within the WHPAs.

Part IV of the Technical Rules for Assessment Reports defines areas of high, medium, and low groundwater vulnerability for each of the assessment methods. For the surface to well advection time (SWAT) method, the classification is based on actual travel times from the surface to the well as follows:

1. areas of high vulnerability are those areas with travel times to a well less than 5 years;
2. areas of medium vulnerability are those areas with travel times greater than or equal to 5 years but less than or equal to 25 years; and
3. areas of low vulnerability are those areas with travel times greater than 25 years.

Surface to well advective travel times consists of two components: the vertical travel time through the unsaturated zone above the water table (UZAT); and the travel time from the water table to the well through the saturated zone (WWAT). Determining the time of travel through the unsaturated zone is highly complex and data on unsaturated soil properties in the study area are virtually nonexistent. Due to the uncertainties related to the estimation of unsaturated travel times, the unsaturated zone travel times (UZAT) were not factored into the calculation of SWAT values discussed below. This is considered to be a conservative assumption because assuming rapid flow through the unsaturated zone travel times will slightly increase the size of the high and medium aquifer vulnerability zones.

WWAT values were determined by releasing virtual particles from cells in the uppermost active groundwater model layer (i.e., the layer containing the water table) within a larger area surrounding the 25-year time-of-travel zones. The particles were forward-tracked from the water table, using MODPATH, to their point of discharge, either the municipal well or to another discharge point such as a nearby stream. The times-of-travel for particles ending up in the municipal wells were assigned back to the originating cell. WWAT values ranged from 0 to about 174 years.

The use of WWAT values allows the vulnerability to be expressed in terms of potential contaminant travel times as opposed to other methods which use relative index values. It should be recognized, however, that the advective travel times are calculated without consideration of the nature of the potential contaminants, release mechanisms, and attenuation processes (e.g., diffusion, dispersion, adsorption and chemical transformation).

The various vulnerability ratings based on the travel times are shown in Table 5-39. The unadjusted intrinsic vulnerability is shown on Map 5-29.
Table 5-39: SWAT Vulnerability Ratings

<table>
<thead>
<tr>
<th>Time of Travel (years) -</th>
<th>Vulnerability Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td><5</td>
<td>High</td>
</tr>
<tr>
<td>5 to 25</td>
<td>Medium</td>
</tr>
<tr>
<td>>25</td>
<td>Low</td>
</tr>
</tbody>
</table>

As described in the Technical Rules (MOE, 2009b), within the WHPAs, vulnerability scores were calculated based on the intersection of the individual WHPAs (ie. A, B, C, D) and the vulnerability ranking that resulted from the SWAT analysis.

The resulting vulnerability scores for the Shelburne WHPAs were completed in accordance with Rule 82 of the Technical Rules. Vulnerability scores range from 10 for areas with the highest vulnerability to 2 for areas with low vulnerability. Scores were assigned as per Table 2(a) in Part VII of the Technical Rules (MOE, 2009b). A summary of the process used to define vulnerability scores is outlined in the Table 5-40 below:

Table 5-40: Wellhead Protection Area Vulnerability Scores – SWAT

<table>
<thead>
<tr>
<th>Time of Travel Zone (WHPA)</th>
<th>0 to 5 years (High)</th>
<th>5 to 25 years (Medium)</th>
<th>> 25 years (Low)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHPA-A (100m)</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>WHPA-B (2yr TOT)</td>
<td>10</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>WHPA-C (5yr TOT)</td>
<td>8</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>WHPA-D (25yr TOT)</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Vulnerability Scoring in the Shelburne Wellhead Protection Area

Due to uncertainties related to the estimation of unsaturated travel times, UZAT values were not factored into the calculation of the SWAT values, resulting in a more conservative vulnerability assessment. It should be noted that no areas of high vulnerability (TOT to well less than 5 years) were identified for Shelburne Well PW7, which reflects the degree of confinement to the deeper Gasport aquifer. **Map 5-30** shows the vulnerability scores assigned to the Shelburne Well PW7 Wellhead Protection Area using the SWAT vulnerability mapping.
Map 5-29: Shelburne Water Supply Unadjusted Intrinsic Vulnerability

* Nottawasaga Valley Source Protection Area Zones overlapping into the Grand River Source Protection Area are shown on this map for illustration only. Users should confirm the exact location of these zones with the Nottawasaga Valley Source Protection Area directly.
Map 5-30: Shelburne Water Supply Wellhead Protection Areas Final Vulnerability
Identification of Transport Pathways and Vulnerability Adjustment

Rules 39 to 41 of the Technical Rules (MOE, 2009b) allow for an increase in vulnerability rating of an aquifer due to the presence of transport pathways that may increase the vulnerability of the aquifer by providing a conduit for contaminants to bypass the natural protection of the aquifer. The presence of transport pathways should be accounted for in the vulnerability assessment and these pathways may include private water wells, unused water wells, abandoned water wells, construction of underground services, subsurface excavations, pits and quarries.

Transport Pathways in the Shelburne Wellhead Protection Area

The risk posed by water wells in the area was assessed using the Ministry of Environment well records database. The potential for a water well to impact the Shelburne Well PW7 water supply was conducted based on two criteria, whether the well is connected to the production aquifer and the interpreted condition and quality of the well construction with respect to preventing contaminants from reaching the aquifer. The survey resulted in the identification of 11 wells within the Shelburne PW7 WHPA (Map 5-31). None were classified as high risk wells, 2 as medium risk and 9 as low risk.

Adjusted Vulnerability to Account for Transport Pathways

The vulnerability of the aquifer may be increased by any land use activity or feature that disturbs the surface above the aquifer, or which artificially enhances flow to that aquifer. In areas where transport pathways exist, the intrinsic vulnerability can be increased to reflect the higher vulnerability caused by the constructed pathway (i.e., from low to moderate or high, and moderate to high). In some cases the intrinsic vulnerability index is already high and cannot be further increased. Based on the assessed presence of transport pathways and modified vulnerability index, the resultant vulnerability score increases to reflect the identified enhanced vulnerability.

The vulnerability of the aquifer should only be increased to account for a transport pathway where there is sufficient confidence in the available data to justify increasing the vulnerability. The vulnerability should be adjusted to account for deep excavations, pits and quarries, etc., where it is documented that the features penetrate a confining unit or remove sufficient material and thus decrease the natural protection of the materials overlying the municipal aquifer. These areas are delineated based on supporting documentation including air photo interpretation and local knowledge of the study areas.

Adjusted Vulnerability Scoring for the Shelburne Wellhead Protection Area

The vulnerability within a 30 m radius of each of the wells identified within the WHPAs with a risk level of medium were increased by one category (i.e., from low to medium, or medium to high). The 30 m radius was selected in a previous study (Burnside, 2010), based on the recommended setback distance from contamination sources under O.Reg 903. Wells with a high risk level would be increased directly to the high vulnerability category; however, it should be noted that 2 of the 4 medium risk wells are located within WHPA-A, which has already been assigned the highest vulnerability score possible (10). The vulnerability zone rating for the area around wells with a risk level of low was left unchanged.
Map 5-31: Shelburne Water Supply Transport Pathways

* Nottawasaga Valley Source Protection Area Zones overlapping into the Grand River Source Protection Area are shown on this map for illustration only. Users should confirm the exact location of these zones with the Nottawasaga Valley Source Protection Area directly.
Uncertainty in the Wellhead Protection Area Delineation and Vulnerability Scoring for the Shelburne Water Supply

Results of an uncertainty analysis indicated that there is a relatively low uncertainty around the activities associated with WHPA delineation and associated vulnerability scoring.

No specific measurements of porosity were available for this study, so values for the various formations were estimated based on published values. Low values were used for the till confining units, thus resulting in greater velocities and shorter travel times. This approach produced results that were considered to be conservative and therefore reduced the uncertainty that the resulting WHPAs would be underestimated.

Of the recommended methods listed in the Technical Rules for Assessment Reports (MOE, 2009b), the WWAT component of the SWAT method is by far the most conservative. It is based on assessing true travel times using locally determined hydraulic properties that have been adjusted and refined through model calibration. The model that the WWAT analyses was based on was developed using recognized hydrogeologic and hydraulic principles and has been calibrated to match the observed heads and, more importantly, the model was calibrated to best match the observed directions of flow by carefully representing factors that influence flow patterns such as local variations in aquifer properties, recharge rates, aquifer and aquitard thickness, and continuity. However, as indicated by the discussions above, it is difficult to quantitatively assess the certainty of the TOT zones in an unbiased way and it is even more difficult to assess uncertainty in the WWAT values within the TOT zones.

The use of WWAT zones to subdivide areas within the TOT zones adds another level of uncertainty because the WWAT results cannot be field-verified or easily tested. The assignment of high vulnerability scores to the 100-m radius, regardless of actual travel times, is an implicit recognition that the level of uncertainty is unacceptable when it comes to potential sources of contamination in close proximity to the wells. The creation of multiple small zones whose boundaries may shift (as pumping rates change or as new data become available) will also present a difficult challenge to municipal planners responsible for incorporating these discontinuous areas into long-term plans.

Water well records from the MOE WWIS dataset were used to evaluate possible transport pathways that could reduce the time of travel of contaminants to the municipal wells. This exercise relied heavily upon the location and construction details (depth and date of completion) within the database. There is an inherent level of uncertainty that is to be expected when using this data, including missing information or discrepancies between physical details. To be conservative, the preferential pathways exercise identified all of the data points, including the poor quality ones that might otherwise be filtered out. In addition, the quality of the construction (e.g., well riser height) was based upon the date of construction, with the assumption that all wells completed during the three periods (pre-1980, from 1980 to 1990, and post-1990) uniformly conformed to the standards and practices of their respective periods.

Managed Lands Within the Shelburne Wellhead Protection Area

Managed lands are lands that may receive Agricultural Source Material (ASM), Non-Agricultural Source Material (NASM) or commercial fertilizer and can be divided into 2 categories: agricultural managed lands (AML) and non-agricultural managed lands. Agricultural managed lands include cropland, fallow and improved pasture that may receive ASM. Non-agricultural managed lands may include golf courses, sports fields, residential lawns and other built-up grassed areas or turf that may have commercial fertilizers applied.
Calculation of the percentage of managed lands was done in accordance with Part II, Rule 16(9) of the Technical Rules (MOE, 2009b). Similar to the calculation of impervious surfaces, mapping the percentage of managed lands area is not required where the vulnerability score for an area is less than the vulnerability score necessary for the activity to be considered a significant threat. Therefore, the percentage of managed lands was only calculated where the vulnerability score in each Wellhead Protection Area was 6 or greater. This criterion was used to determine the need to calculate managed lands surrounding the Shelburne Well PW7 in the Township of Melancthon (Table 5-41).

Table 5-41: Shelburne Wellhead Protection Areas with Vulnerability Scores of 6 or Higher

<table>
<thead>
<tr>
<th>Township</th>
<th>Location</th>
<th>Well</th>
<th>WHPA-A</th>
<th>WHPA-B</th>
<th>WHPA-C</th>
<th>WHPA-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melancthon</td>
<td>Shelburne</td>
<td>PW7</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Methodology for Calculating Managed Land Percentage

The percentage of managed lands was calculated using the following methodology (MOE, 2009a):

1. Using MPAC property data, parcels of land that were located entirely or partially within the wellhead protection areas with a vulnerability score of 6 or greater were selected for assessment.
2. Wooded areas, wetlands, drainage and pond features were removed from the selected parcels based on GIS data and aerial photography.
3. The remaining parcels were categorised as either agricultural managed lands or non-agricultural managed lands based on aerial photography, MPAC data and SOLRIS land use data. The area of the agricultural managed lands was calculated and divided by the total area of parcels that intersected the WHPAs.

To be consistent with previous studies in the area, residential lands were assumed to be comprised of 50% managed lands per parcel when calculating the amount of non-agricultural managed lands. Non-residential/non-agricultural lands were assumed to be 100% managed lands; this included golf courses, sports fields, lawns and other grassed areas. Wooded areas, wetlands, drainage and pond features were removed when calculating managed lands. The area comprised of NAMLs was calculated and divided by the total area of parcels that intersected the WHPAs. The total percentage of managed lands was calculated by dividing the sum of the agricultural managed lands and the non-agricultural managed lands areas by the total area of the parcels that intersected the WHPAs.

The results of the calculations for managed lands are presented in **Table 5-42** and **Map 5-32**. The coding of N/A indicates the vulnerability score in this area is 4 or less and therefore the area was not assessed.
Table 5-42: Managed Lands Percentage in the Shelburne Wellhead Protection Areas

<table>
<thead>
<tr>
<th>Township</th>
<th>Location</th>
<th>Well</th>
<th>WHPA-A</th>
<th>WHPA-B</th>
<th>WHPA-C</th>
<th>WHPA-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melancthon</td>
<td>Melancthon</td>
<td>PW7</td>
<td>85.1%</td>
<td>71.8%</td>
<td>80.3%</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Livestock Density within the Shelburne Wellhead Protection Area

Livestock density in the Shelburne Well PW7 WHPAs is expressed in terms of nutrient units per acre (NU/Acre). This is calculated as the number of animals housed or pastured on a farm unit (expressed in terms of nutrient units) divided by the total area of agricultural managed land within a given area. As was the case with calculating the percentage of managed lands, livestock density analysis is only required for WHPAs with subareas having vulnerability scores greater than or equal to 6 (Technical Rule 16(10)). Livestock density was calculated by including all properties that were either partially or completely contained within the PW7 WHPAs.

The method for calculating livestock density consisted of three main steps (MOE, 2009a):

1. **Estimate the number of each category of animals present within the specified area.**
 The first step involved identifying agricultural parcels that have livestock operations that were within or partially within the PW7 WHPAs. This was accomplished using the MPAC data coverage and 2010 SWOOP air photos. The type of livestock operations was identified using the MPAC farm classification system. Air photos were used to confirm the type of operations wherever possible, and to define the footprints of livestock buildings. Next, a direct calculation of Nutrient Units (NUs) was conducted using the conversion factors provided by the Ontario Ministry of Agriculture Food and Rural Affairs (OMAFRA) in MOE (2009a) and presented in Table 4-2. A direct enumeration of the number of animals was not necessary.

2. **Convert the number of each category of animals into NUs, allowing all livestock to be compared on an equivalent unit of measure.**
 Nutrient Units were estimated for each property based on the footprints of the livestock buildings, as discussed above.

3. **Sum the total NUs within the specified area and divide by the area of agricultural managed land within the same specified area.**
 The estimated NUs for livestock buildings on parcels of land that intersected each of the WHPA areas were totalled and divided by the total area of agricultural managed land that intersected the WHPAs (including both livestock and non-livestock farms). It was important to use to total NUs generated and the total parcel area, particularly when parcels were only partially within the specified WHPA, because the resulting livestock density was pro-rated to the portion of the farm within the WHPA area.

Livestock densities were calculated for each of the applicable WHPAs and are presented in Table 5-43 and Map 5-33.
Table 5-43: Livestock Density (NU/acre)

<table>
<thead>
<tr>
<th>Township</th>
<th>Location</th>
<th>Well</th>
<th>WHPA-A</th>
<th>WHPA-B</th>
<th>WHPA-C</th>
<th>WHPA-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melancthon</td>
<td>Melancthon</td>
<td>PW7</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Percentage of Impervious Surface Area within the Shelburne Wellhead Protection Areas

Under Technical Rule 16 (11), the percentage of impervious surface area within each vulnerable area must be calculated to evaluate possible threats posed by the application of road salt. The technical rules define impervious surface areas as highways and paved surfaces used for vehicular traffic and parking, as well as paved pedestrian paths. The percentage of impervious surface area was determined by using a 1km square grid, centred over the vulnerable areas (as per Rule 17), and calculating the percentage of impervious area within each grid cell.

To estimate the impervious surface area, SOLRIS V1.2 (MNR, 2008) land use data was analyzed. The data are on a 5 by 5 m grid and were also used to estimate imperviousness for the hydrologic model. The imperviousness associated with each SOLRIS land use code was used to assign percent impervious to each grid cell. One exception was that the imperviousness assigned to the transportation code was increased to 100%. Finally, the imperviousness values for the 5m grid were aggregated to the 1km square grid.

The percentage of total impervious surface areas within the Shelburne Well PW7 WHPA is presented in Map 5-34.
Map 5-32: Shelburne Well PW7 Wellhead Protection Areas Percent Managed Lands

- Lower Tier Municipal Boundary
- Road
- Railway
- Streams
- Lake / Reservoir
- Source Protection Area Boundary
- Municipal Well

Legend:
Nottawasaga Valley Wellhead Protection Zones

Percent Managed Lands
- Managed Land < 40%
- Managed Land 40 - 80%
- Managed Land > 80%

Map created: 3-Mar-2019

* Nottawasaga Valley Source Protection Area Zones overlapping into the Grand River Source Protection Area are shown on this map for illustration only. Users should confirm the exact location of these zones with the Nottawasaga Valley Source Protection Area directly.
Map 5-33: Shelburne Well PW7 Wellhead Protection Areas Livestock Density

* Nottawasaga Valley Source Protection Area Zones overlapping into the Grand River Source Protection Area are shown on this map for illustration only. Users should confirm the exact location of these zones with the Nottawasaga Valley Source Protection Area directly.
Map 5-34: Shelburne Well PW7 Wellhead Protection Areas Percent Impervious Surface

[Map showing the wellhead protection areas with various color-coded zones for percent impervious surface.]

* Nottawasaga Valley Source Protection Area Zones overlapping into the Grand River Source Protection Area are shown on this map for illustration only. Users should confirm the exact location of these zones with the Nottawasaga Valley Source Protection Area directly.
5.4.3 Drinking Water Threats Assessment

The Ontario Clean Water Act, 2006 defines a Drinking Water Threat as “an activity or condition that adversely affects or has the potential to adversely affect the quality or quantity of any water that is or may be used as a source of drinking water, and includes an activity or condition that is prescribed by the regulation as a drinking water threat.”

The Technical Rules (MOE, 2009) list five ways in which to identify a drinking water threat:

a) Through an activity prescribed by the Act as a Prescribed Drinking Water Threat;

b) Through an activity identified by the Source Water Protection Committee as an activity that may be a threat and (in the opinion of the Director) a hazard assessment confirms that the activity is a threat;

c) Through a condition that has resulted from past activities that could affect the quality of drinking water;

d) Through an activity associated with a drinking water issue; and

e) Through an activity identified through the events based approach (this approach has not been used in this Assessment Report).

Activities that Are or Would be Drinking Water Threats in the Wellhead Protection Areas

Ontario Regulation 287/07, pursuant to the Clean Water Act, provides a list of Prescribed Drinking Water Threats that could constitute a threat to drinking water sources. Table 5-44 lists the activities that are prescribed drinking water threats. Listed beside the prescribed drinking water threats are the typical land use activities that are associated with the threat.

In addition, there is one local threat that has been identified in the Lake Erie Source Protection Region: the transportation of oil and fuel products through a pipeline.

A spill of oil and fuel products could result in the presence of petroleum hydrocarbons or BTEX in groundwater. The conveyance of oil by way of an underground pipeline that would be designated as transmitting or distributing “liquid hydrocarbons”, including “crude oil”, “condensate”, or “liquid petroleum products”, and not including “natural gas liquids” or “liquefied petroleum gas”, within the meaning of Ontario Regulation 210/01 under the Technical Standards and Safety Act or is subject to the National Energy Board Act, was approved as a local threat. The letter of approval from the Director of the Source Protection Programs Branch and table of hazard ratings is found in Appendix D.

<table>
<thead>
<tr>
<th>Table 5-44: Drinking Water Threats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prescribed Drinking Water Threat</td>
</tr>
<tr>
<td>Ontario Regulation 287/07 s.1.1.(1)</td>
</tr>
<tr>
<td>1 The establishment, operation or maintenance of a waste disposal site within the meaning of Part V of the Environmental Protection Act.</td>
</tr>
</tbody>
</table>

August 16, 2019 5-109
<table>
<thead>
<tr>
<th>Local Drinking Water Threat</th>
<th>Land Use / Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>The conveyance of oil by way of an underground pipeline that would be designated as transmitting or distributing “liquid hydrocarbons”, including “crude oil”, “condensate”, or “liquid petroleum products”, and not including “natural gas liquids” or “liquefied petroleum gas”, within the meaning of the Ontario Regulation 210/01 under the Technical Standards and Safety Act or is subject to the National Energy Board Act. ¹</td>
<td>Oil pipeline</td>
</tr>
</tbody>
</table>

1: As confirmed by the letter from the Director of the Source Protection Programs Branch in Appendix D.

Identification of Significant, Moderate and Low Drinking Water Quality Threats for the Shelburne Water Supply

The identification of a land use activity as a significant, moderate, or low drinking water threat depends on its risk score, determined by considering the circumstances of the activity and the type and vulnerability score of any underlying protection zones, as set out in the Tables of Drinking Water Threats available through www.sourcewater.ca. Information on drinking water threats is also accessible through the Source Water Protection Threats Tool: http://swpip.ca. For local threats, the risk score is calculated as per the Director’s Approval Letter, as shown in Appendix C. The information above can be used with the vulnerability scores shown in Map 5-30 to help the public determine where certain activities are or would be significant, moderate and low drinking water threats.
Table 5-45 provides a summary of the threat levels possible in the Shelburne Well Supply for Chemical, Dense Non-Aqueous Phase Liquid (DNAPL), Pathogen, and Local Threats (Oil Pipelines). A checkmark indicates that the threat classification level is possible for the indicated threat type under the corresponding vulnerable area / vulnerable score; a blank cell indicates that it is not. The colours shown for each vulnerability score correspond to those shown in Map 5-30.

Table 5-45: Identification of Drinking Water Quality Threats in the Shelburne Well PW7 Wellhead Protection Area

<table>
<thead>
<tr>
<th>Threat Type</th>
<th>Vulnerable Area</th>
<th>Vulnerability Score</th>
<th>Threat Classification Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Significant 80+</td>
</tr>
<tr>
<td>Chemicals</td>
<td>WHPA-A</td>
<td>10</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>WHPA-B</td>
<td>8</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>WHPA-B/C</td>
<td>6</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>WHPA-C/D</td>
<td>2 & 4</td>
<td></td>
</tr>
<tr>
<td>Handling / Storage of DNAPLs</td>
<td>WHPA-A/B/C</td>
<td>Any Score</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>WHPA-D</td>
<td>2 & 4</td>
<td></td>
</tr>
<tr>
<td>Pathogens</td>
<td>WHPA-A</td>
<td>10</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>WHPA-B</td>
<td>8</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>WHPA-B/C</td>
<td>6</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>WHPA-C/D</td>
<td>Any Score</td>
<td></td>
</tr>
<tr>
<td>Local Threat (Oil Pipelines)</td>
<td>WHPA-A</td>
<td>10</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>WHPA-B</td>
<td>8</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>WHPA-B/C</td>
<td>6</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>WHPA-C/D</td>
<td>2 & 4</td>
<td></td>
</tr>
</tbody>
</table>

5.4.4 Conditions Evaluation

In addition to present land use activities, any conditions resulting from past activities are also considered drinking water threats. As described in the Technical Rules (MOE, 2009), the following conditions are considered drinking water threats to groundwater sources if located within vulnerable areas:

- The presence of a non-aqueous phase liquid in groundwater in a HVA, SGRA or Wellhead Protection Area;
- The presence of a contaminant in groundwater in a HVA, SGRA or a Wellhead Protection Area, if the contaminant is listed in Table 2 of the Soil, Groundwater and Sediment Standards and is present at a concentration that exceeds the potable groundwater standard set out for the contaminant in the table.

Conditions Evaluation for the Shelburne Water Supply

A review of available data regarding potential contamination within the WHPAs was completed. Data available included the National Pollutant Release Inventory, MOE Brownfields Site Registry and MOE Waste Disposal Sites Inventory. Previous studies completed in the area by Burnside (2002, 2010) and Golder and banks (2013) provided additional resources for screening for past and historic activities that could pose a threat to water quality.
No conditions resulting from past or historical activities were identified within the PW7 WHPAs based on the criteria established in Technical Rule 126.

5.4.5 Drinking Water Quality Issues Evaluation

The objective of the Issues evaluation is to identify drinking water Issues where the existing or trending concentration of a parameter or pathogen at an intake, well or monitoring well would result in the deterioration of the quality of water for use as a source of drinking water. The parameter or pathogen must be listed in Schedule 1, 2 or 3 of the Ontario Drinking Water Quality Standards (ODWQS) or Table 4 of the Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines (Technical Rules XI.1 (114 – 117)).

Once a drinking water Issue is identified, the objective is to identify all sources and threats that may contribute to the issue within an Issue Contributing Area and manage these threats appropriately. If at this time the Issue Contributing Area can not be identified or the Issue can not be linked to threats then a work plan must be provided to assess the possible link.

If an Issue is identified for an intake, well or monitoring well, then all threats related to a particular Issue within the Issue Contributing Areas are significant drinking water threats, regardless of the vulnerability.

Methodology for Water Quality Issues Evaluation for the Shelburne Water Supply

Drinking water issues were evaluated for Shelburne well PW7 through a review of water quality data collected during the initial well construction and assessment completed by Golder and Banks (2013). Water quality data were compared to the ODWQS to identify those that were in exceedance and where possible data were assessed to identify any increasing trends in concentration.

Water Quality Issues Evaluation for the Shelburne Water Supply

All parameters analyzed were found to be below their respective ODWQS criteria, with the exception of total hardness. Total hardness ranged from 234 to 325 mg/L as calcium carbonate. These levels exceeded the Operational Guideline range of 80-100mg/L, provided in the Technical Support Document for the Ontario Drinking Water Standards, Objectives and Guidelines. Elevated levels of total hardness are typical of groundwater sourced from bedrock aquifers, and have been persistent in the Town of Shelburne’s drinking water supply. Total hardness is considered to be an operational guideline/aesthetic objective that is often treated using household water softening system, as such it has not been identified as an issue.

The construction of well PW7 was motivated by reoccurring water quality problems related to arsenic in the other Town of Shelburne supply wells. The source of arsenic is assumed to be from naturally-occurring arsenopyrite in the Guelph Formation; PW7 is screened in the deeper Gasport Formation in hopes that the intervening low conductivity units will prevent the transport of arsenic to the deeper aquifer. Water quality samples collected during testing of PW7 were found to range from 0.4 to 3.8µg/L, which are below the current ODWQS of 25µg/L. However, it was noted that during the 72-hour pumping test arsenic concentrations increased from 0.9 to 3.6 µg/L. At this time arsenic is not considered to be an issue for the quality of drinking water from supply well PW7.

Summary of Water Quality Issues Evaluation for Shelburne Water Supply

Upon review of the available current drinking water quality data there are no identified Issues under Technical Rule 114 for the Shelburne Well PW7.
Limitations and Uncertainty for the Water Quality Issues Evaluation for the Shelburne Water Supply

The water quality data reviewed was limited to the sampling conducted in 2010 and an assessment of water quality trends could not be completed.

5.4.6 Enumeration of Significant Drinking Water Quality Threats

As per the Technical Rules (MOE, 2009b), the enumeration of significant threats is required for the completion of the Assessment Report.

Data Sources for the Activity Threats Assessment of the Shelburne Water Supply

The threats inventory was compiled using the data and information sources outlined below. The primary approach for compiling this inventory employed a method of associating land use activities to threat subcategories in the MOE Lookup Tables (LUTs). The major steps in this process include:

1. Consulting Municipal Property Assessment Corporation (MPAC) property codes and cross referencing codes with aerial photography from the South Western Ontario Orthoimagery Project (SWOOP, 2010) to assign land uses to each of the properties that intersect the PW7 WHPAs. Each property is then associated with a corresponding North American Classification System (NAICS) code.

2. The NAICS codes for each property were used to access the associated list of prescribed threats using the MOE LUTs.

3. The threats associated with each property were spatially assigned a vulnerability score based on the nature of the specific activity (e.g., point source of distributed) and its location in the delineated vulnerable areas, as well as the applicable circumstances defined in the Table of Drinking Water Threats.

The use of land use classification as a basis for evaluating threats is considered to be adequate, considering all of the properties within the PW7 WHPAs are classified as rural residential and/or agricultural.

Significant Drinking Water Quality Threats for the Shelburne Water Supply

As per the Technical Rules (MOE, 2009b), the enumeration of significant threats is required for the completion of the Assessment Report. Table 5-46 summarizes the significant threats by circumstance ID identified in the Wellhead Protection Areas in the Township of Melancthon based on existing land uses.
Limitations and Uncertainty for the Enumeration of Significant Drinking Water Threats for the Shelburne Water Supply

Using land use classification as a basis for evaluating threats does have limitations and wherever possible the land use base analysis has been supplemented with data from other sources.

To be consistent with other vulnerability and threat assessment studies for drinking water systems in the area, the technical document “Reducing Inconsistencies in Threat Subcategory Enumeration” (SGBLS, 2010) was used as reference. Because the available information for residential and agricultural lands rarely included storage or handling quantifies for chemicals or agricultural source materials, conservative assumptions were applied when evaluating the threat category (low, medium or significant) using the Tables of Circumstances. In some cases the SGBLS (2010) technical Bulletin provided more reasonable assumptions. Nevertheless, the use of land use classification for the evaluation of drinking water threats is associated with significant uncertainty and has been classified as high.

5.5 Town of Orangeville

5.5.1 Orangeville Water Supply

The Town of Orangeville is located in the headwaters of the Credit Valley River and in the Credit Valley Source Protection Area. Orangeville has 12 water supply wells in nine well fields that supply the town of approximately 29,000 people. The wells obtain water from a combination of overburden and bedrock aquifers (Burnside, 2010). Portions of WHPA-B, C and D for the Orangeville wells, with the exception of Well 10, cross into the Grand River Source Protection Area (Map 5-35).
For further information on the Orangeville Water Supply System, the physical settings, and the Vulnerability Assessment for the system, please see the Assessment Report for the Credit Valley Source Protection Area.

5.5.2 Drinking Water Quality Threats Assessment

The Ontario Clean Water Act, 2006 defines a Drinking Water Threat as "an activity or condition that adversely affects or has the potential to adversely affect the quality or quantity of any water that is or may be used as a source of drinking water, and includes an activity or condition that is prescribed by the regulation as a drinking water threat."

The Technical Rules (MOE, 2009) list five ways in which to identify a drinking water threat:

a) Through an activity prescribed by the Act as a Prescribed Drinking Water Threat;

b) Through an activity identified by the Source Water Protection Committee as an activity that may be a threat and (in the opinion of the Director) a hazard assessment confirms that the activity is a threat;

c) Through a condition that has resulted from past activities that could affect the quality of drinking water;

d) Through an activity associated with a drinking water Issue; and

e) Through an activity identified through the events based approach (this approach has not been used in this Assessment Report).

Prescribed Activities that Are or Would be Drinking Water Threats in the Wellhead Protection Areas

Ontario Regulation 287/07, pursuant to the Clean Water Act, provides a list of Prescribed Drinking Water Quality Threats that could constitute a threat to drinking water sources. Table 5-47 lists the activities that are prescribed as water quality related prescribed drinking water threats. Listed beside the prescribed drinking water threats are the typical land use activities that are associated with the threat.

In addition, there is one local threat that has been identified in the Lake Erie Source Protection Region: the transportation of oil and fuel products through a pipeline.

A spill of oil and fuel products could result in the presence of petroleum hydrocarbons or BTEX in groundwater. The conveyance of oil by way of an underground pipeline that would be designated as transmitting or distributing "liquid hydrocarbons", including "crude oil", "condensate", or "liquid petroleum products", and not including "natural gas liquids" or "liquefied petroleum gas", within the meaning of Ontario Regulation 210/01 under the Technical Standards and Safety Act or is subject to the National Energy Board Act, was approved as a local threat. The letter of approval from the Director of the Source Protection Programs Branch and table of hazard ratings is found in Appendix D.
Table 5-47: Drinking Water Threats

<table>
<thead>
<tr>
<th>Prescribed Drinking Water Threat</th>
<th>Land Use / Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontario Regulation 287/07 s.1.1.(1)</td>
<td>Landfills – Active, Closed Hazardous Waste Disposal Liquid Industrial Waste</td>
</tr>
<tr>
<td>1 The establishment, operation or maintenance of a waste disposal site within the meaning of Part V of the Environmental Protection Act.</td>
<td></td>
</tr>
<tr>
<td>2 The establishment, operation or maintenance of a system that collects, stores, transmits, treats or disposes of sewage.</td>
<td>Sewage Infrastructures Septic Systems, etc.</td>
</tr>
<tr>
<td>3 The application of agricultural source material to land.</td>
<td>e.g. manure, whey, etc.</td>
</tr>
<tr>
<td>4 The storage of agricultural source material.</td>
<td>e.g. manure, whey, etc.</td>
</tr>
<tr>
<td>5 The management of agricultural source material.</td>
<td>aquaculture</td>
</tr>
<tr>
<td>6 The application of non-agricultural source material to land.</td>
<td>Organic Soil Conditioning Biosolids</td>
</tr>
<tr>
<td>7 The handling and storage of non-agricultural source material.</td>
<td>Organic Soil Conditioning Biosolids</td>
</tr>
<tr>
<td>8 The application of commercial fertilizer to land.</td>
<td>Agriculture Fertilizer</td>
</tr>
<tr>
<td>9 The handling and storage of commercial fertilizer.</td>
<td>General Fertilizer Storage</td>
</tr>
<tr>
<td>10 The application of pesticide to land.</td>
<td>Pesticides</td>
</tr>
<tr>
<td>11 The handling and storage of pesticide.</td>
<td>General Pesticide Storage</td>
</tr>
<tr>
<td>12 The application of road salt.</td>
<td>Road Salt Application</td>
</tr>
<tr>
<td>13 The handling and storage of road salt.</td>
<td>Road Salt Storage</td>
</tr>
<tr>
<td>14 The storage of snow.</td>
<td>Snow Dumps</td>
</tr>
<tr>
<td>15 The handling and storage of fuel.</td>
<td>Petroleum Hydrocarbons</td>
</tr>
<tr>
<td>16 The handling and storage of a dense non-aqueous phase liquid.</td>
<td>DNAPLs</td>
</tr>
<tr>
<td>17 The handling and storage of an organic solvent</td>
<td>Organic Solvents</td>
</tr>
<tr>
<td>18 The management of runoff that contains chemicals used in the de-icing of aircraft.</td>
<td>De-icing</td>
</tr>
<tr>
<td>19 An activity that takes water from an aquifer or a surface water body without returning the water taken to the same aquifer or surface water body.</td>
<td>Private water taking</td>
</tr>
<tr>
<td>20 An activity that reduces the recharge of an aquifer.</td>
<td>Impervious Surfaces</td>
</tr>
<tr>
<td>21 The use of land as livestock grazing or pasturing land, an outdoor confinement area or a farm-animal yard.</td>
<td>Agricultural Operations</td>
</tr>
</tbody>
</table>

Local Drinking Water Quality Threat

<table>
<thead>
<tr>
<th>Land Use / Activity</th>
</tr>
</thead>
</table>

The conveyance of oil by way of an underground pipeline that would be designated as transmitting or distributing “liquid hydrocarbons”, including “crude oil”, “condensate”, or “liquid petroleum products”, and not including “natural gas liquids” or “liquefied petroleum gas”, within the meaning of the Ontario Regulation 210/01 under the Technical Standards and Safety Act or is subject to the National Energy Board Act.

1: As confirmed by the letter from the Director of the Source Protection Programs Branch in Appendix D.

Identification of Significant, Moderate and Low Drinking Water Threats for the Orangeville Supply System

The identification of a land use activity as a significant, moderate, or low drinking water threat depends on its risk score, determined by considering the circumstances of the activity and the
type and vulnerability score of any underlying protection zones, as set out in the Tables of Drinking Water Threats available through www.sourcewater.ca. Information on drinking water threats is also accessible through the Source Water Protection Threats Tool: http://swpip.ca. For local threats, the risk score is calculated as per the Director’s Approval Letter, as shown in Appendix C. The information above can be used with the vulnerability scores delineated for the Orangeville Supply System to help the public determine where certain activities are or would be significant, moderate and low drinking water threats.

Table 5-48 provides a summary of the threat levels possible for the Orangeville Well Supply, for Chemical, Dense Non-Aqueous Phase Liquid (DNAPL), Pathogen, and Local Threats (Oil Pipelines). A checkmark indicates that the threat classification level is possible for the indicated threat type under the corresponding vulnerable area / vulnerable score; a blank cell indicates that it is not.

<table>
<thead>
<tr>
<th>Threat Type</th>
<th>Vulnerable Area</th>
<th>Vulnerability Score</th>
<th>Threat Classification Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Significant 80+</td>
</tr>
<tr>
<td>Chemicals</td>
<td>WHPA-A/B</td>
<td>10</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>WHPA-B</td>
<td>8</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>WHPA-B/C</td>
<td>6</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>WHPA-C/D</td>
<td>2 & 4</td>
<td></td>
</tr>
<tr>
<td>Handling / Storage of DNAPLs</td>
<td>WHPA-A/B/C</td>
<td>Any Score</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>WHPA-D</td>
<td>2 & 4</td>
<td></td>
</tr>
<tr>
<td>Pathogens</td>
<td>WHPA-A/B</td>
<td>10</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>WHPA-B</td>
<td>8</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>WHPA-B/C</td>
<td>6</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>WHPA-C/D</td>
<td>Any Score</td>
<td></td>
</tr>
<tr>
<td>Local Threat (Oil Pipelines)</td>
<td>WHPA-A/B</td>
<td>10</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>WHPA-B</td>
<td>8</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>WHPA-B/C</td>
<td>6</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>WHPA-C/D</td>
<td>2 & 4</td>
<td></td>
</tr>
</tbody>
</table>

5.5.3 Drinking Water Quality Issues Evaluation

The objective of the Issues evaluation is to identify drinking water Issues where the existing or trending concentration of a parameter or pathogen at an intake, well or monitoring well would result in the deterioration of the quality of water for use as a source of drinking water. The parameter or pathogen must be listed in Schedule 1, 2 or 3 of the Ontario Drinking Water Quality Standards (ODWQS) or Table 4 of the Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines (Technical Rules XI.1 (114 – 117)).

Once a drinking water Issue is identified, the objective is to identify all sources and threats that may contribute to the Issue within an Issue Contributing Area and manage these threats appropriately. If at this time the Issue Contributing Area cannot be identified or the Issue cannot be linked to threats then a work plan must be provided to assess the possible link.
If an issue is identified for an intake, well or monitoring well, then all threats related to a particular issue within the issue contributing areas are as significant drinking water threats, regardless of the vulnerability.

Methodology for Identifying Drinking Water Quality Issues

As part of the issues evaluation, available water quality data was reviewed to assess whether any contaminants are impacting or have the potential to impact or interfere with the Town of Orangeville drinking water sources. This included the following steps:

- Collection of water quality data.
- Comparison of water quality data to the ODWQS to see if any parameters were in exceedance.
- Concentrations of parameters of consideration over time were plotted to evaluate if there were any increasing trends.

Drinking Water Quality Issues Evaluation for the Orangeville Water Supply

Microbiological testing is reported for the municipal wells on a biweekly basis. There were occasional non-zero counts for Total Coliforms and background bacterial counts; however, these results are typical of wells that are influenced by surface water (GUDI). All wells identified as GUDI in the Orangeville Water Supply System have been equipped with treatment systems equivalent to surface water treatment systems that can handle the occasional presence of pathogens. A pathogenic issue was not identified for the Orangeville supply system.

Sodium concentrations are currently below the provincial standards in Well 2A, 5, 5A, 7, 9A and 9B. There is, however, a noted increasing trend at Well 2A, 5, 5A, 9A and 9B. Based on projections of these trends it is anticipated that sodium concentration at Well 9A and 9B will exceed the provincial standard by 2024. Although increasing, the concentration at Well 2A and Well 5 and 5A is not expected to exceed the ODWQS standards within the next 50 years.

The trends for Wells 6, 10 and 11 indicate that while the current concentrations are below the provincial standards, they are likely to exceed them by 2042 at Well 6 and by 2025 at Well 10. Based on the current trend there is no anticipated exceedance at Well 11. A similar analysis for Well 8B, 8C and 12 (TM) show that no increasing trend has developed at these wells.

Chloride concentrations reported between 1983 and 2008 show that chloride concentrations are increasing significantly in Well 2A, Well 5, 5A, 9A and 9B. Although currently below the provincial standards it is anticipated that chloride levels will exceed the provincial standards within the next 50 years if this trend were to continue. More detailed analysis shows that the exceedance is likely by about 2042 for Well 2A and 2052 for Well 5 and 5A. At Well 9A and 9B the exceedance is expected in 2014 - 2015 based on the projection of the current trend.

Concentrations for Well 6, Well 10 and Well 11 are currently below the provincial standards, but based on the observed trends are expected to exceed the standards by the year 2024 for Well 6 and 2044 for Well 11. At Well 10 a similar significant increase to that at Well 9A and 9B is anticipated based on the current trend and the provincial standards are likely to be exceeded at this well by 2015. Current chloride concentrations for Well 8B, 8C and 12 (TM) are well below the provincial standards with no indication of an increasing trend.
Nitrate concentrations in the Orangeville wells range from 0 mg/L to 5.5 mg/L. No significant increases in nitrates with time have been observed in the monitoring results for the majority of the wells. Well 5 and 5A have elevated nitrate concentrations ranging from 3.5 up to 6 mg/L and vary seasonally, but do not have a significant increasing trend. A projection of the current trend based on average values indicates that nitrate concentrations will not exceed the provincial standards in the next 50 years at this well.

Analysis of values observed for Well 2A and Well 9A and 9B indicate that there is no significant trend at these locations as the variations observed are within the historical ranges. It is interpreted that these results are due to the impact of seasonal variation on the nitrate values at these wells. The anticipated impact of development activities within the WHPA for these wells is the reduction in nitrate loading due to the change from agricultural to residential land use. Due to the anticipated reduction in nitrate loading and the small nature of the variations in nitrate at the wells, it is concluded that there is no issue with nitrates at these or any of the wells in the Orangeville supply system.

Summary of Drinking Water Quality Issues Evaluation for the Orangeville Water Supply

Based on the above water quality analysis, sodium, and chloride have been identified as Issues under Technical Rule 114 for the Orangeville supply system.

Issue Contributing Area - Sodium and Chloride

The WHPAs defined for Well 2A, 5, 5A, 9A and 9B overlap and have been mapped as a single WHPA. The Issue Contributing Area for the chloride (road salt) impact noted is interpreted as being the extent of the 25 year time-of-travel (WHPA A to D). Currently, the area within the WHPA sits at the west end of the Town of Orangeville and features a number of subdivision developments that have become established since 2000. Within these subdivisions, it is expected that winter road maintenance results in road salts being leached into the ground and the groundwater. The WHPA also features the main east west arterial road through the Town of Orangeville as well as the new bypass.

The 25 year time-of-travel defined for Well 6 and Well 11 is regarded as the Issue Contributing Area for the sodium and chloride levels noted at these wells. This WHPA encompasses an area on the western edge of the Town of Orangeville within which new subdivisions have also been developed. Alongside these developments are a number of major roadways including the existing Highway 9 (bypass for the Town of Orangeville) and Townline. It is anticipated that the winter maintenance of these roadways has contributed to the noted sodium and chloride impact.

The Technical Rules have identified septic systems as potential sources of sodium and or chloride in an Issue Contributing Area. In the Orangeville ICA the elevated concentrations of sodium and chloride are a result of the application of road salt and other winter maintenance practices. As such, septic systems and septic system holding tanks have not been identified as significant drinking water threats in the chloride Issue Contributing Area for Orangeville.
Map 5-35: Issue Contributing Areas for the Orangeville Water Supply located in the Grand River Watershed
5.5.4 Enumeration of Significant Drinking Water Quality Threats

The Technical Rules require an estimation of the number of locations at which an Activity is a significant drinking water threat and the number of locations at which a Condition resulting from past activity is a significant drinking water threat.

Enumeration of Significant Drinking Water Issues for the Orangeville Water Supply

As per the Technical Rules; Assessment Report (Clean Water Act, 2006), the enumeration of significant threats is required for the completion of the Assessment Report. Table 5-49 summarizes the significant threats for the Orangeville Water Supply within the Grand River watershed.

Table 5-49: Orangeville Water Supply Significant Drinking Water Threats within the Grand River Watershed

<table>
<thead>
<tr>
<th>PDWT¹ #</th>
<th>Threat Subcategory</th>
<th>Number of Activities</th>
<th>Vulnerable Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Application Of Road Salt</td>
<td>23</td>
<td>ICA</td>
</tr>
<tr>
<td>13</td>
<td>Storage Of Road Salt</td>
<td>15</td>
<td>ICA</td>
</tr>
<tr>
<td>16</td>
<td>Handling and Storage Of A Dense Non Aqueous Phase Liquid (DNAPL)</td>
<td>2</td>
<td>WHPA-B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WHPA-C</td>
</tr>
<tr>
<td>19</td>
<td>An activity that takes water from an aquifer or a surface water</td>
<td>44</td>
<td>WHPA-Q1</td>
</tr>
<tr>
<td></td>
<td>body without returning the water taken to the same aquifer or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>surface water body.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Number of Activities</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Number of Properties</td>
<td>68</td>
<td></td>
</tr>
</tbody>
</table>

1: Prescribed Drinking Water Threat Number refers to the prescribed drinking water threat listed in O.Reg 287/07s.1.1.(1).

2: Where applicable, waste, sewage, and livestock threat numbers are reported by sub-threat; fuel and DNAPL by Prescribed Drinking Water Threat category.

Note: Certain types of activities on residential properties that are incidental in nature and that are significant drinking water threats are not enumerated. These threats include the application of commercial fertilizer on residential properties, the storage of organic solvents (dense non-aqueous phase liquids) on residential properties, and the storage of fuel (e.g., heating fuel tanks) on residential properties in natural gas serviced areas.

Note: Storm sewer piping is not considered to be part of a storm water management facility.
This page left blank intentionally.